144
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Introduction a new structure made of hydroxyapatite and graphene nanoparticles incorporated into PCL/gelatine nano fibrous web as bone scaffold

ORCID Icon, , &
Pages 1469-1475 | Received 20 Apr 2022, Accepted 19 Sep 2022, Published online: 11 Oct 2022

References

  • Binulal, N., Natarajan, A., Menon, D., Bhaskaran, V., Mony, U., & Nair, S. V. (2014). PCL–gelatin composite nanofibers electrospun using diluted acetic acid–ethyl acetate solvent system for stem cell-based bone tissue engineering. Journal of Biomaterials Science. Polymer Edition, 25(4), 325–340. https://doi.org/10.1080/09205063.2013.859872
  • Caeiro, J. R., González, P., & Guede, D. (2013). Biomechanics and bone (& II): Trials in different hierarchical levels of bone and alternative tools for the determination of bone strength. Revista de Osteoporosis y Metabolismo Mineral, 5(2), 99–108. https://doi.org/10.4321/S1889-836X2013000200007
  • Choi, E. Y., Han, H. T., Hong, J., Kim, J. E., Lee, S. H., Kim, H. W., & Kim, S. O. (2010). Noncolvalent functionalization of graphene with end-functional polymers. Journal of Materials Chemistry, 20(10), 1907. https://doi.org/10.1039/b919074k
  • Dulnik, J., Denis, P., Sajkiewicz, P., Kołbuk, D., & Choińska, E. (2016). Biodegradation of bicomponent PCL/gelatin and PCL/collagen nanofibers electrospun from alternative solvent system. Polymer Degradation and Stability, 130, 10–21. https://doi.org/10.1016/j.polymdegradstab.2016.05.022
  • Fernandes, M. E., Pires, A. R., Mano, F. J., & Reis, L. R. (2013). Bionanocomposites from lignocellulosic resources: Properties, applications and future trends for their use in the biomedical field. Progress in Polymer Science, 38(10–11), 1415–1441. https://doi.org/10.1016/j.progpolymsci.2013.05.013
  • Fernandez-Yague, A. M., Abbah, A. S., McNamara, L., Zeugolis, I. D., Pandit, A., & Biggs, J. M. (2015). Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies. Advanced Drug Delivery Reviews, 84, 1–29. https://doi.org/10.1016/j.addr.2014.09.005
  • França, D. C., Morais, D. D., Bezerra, E. B., Araújo, E. M., & Wellen, R. M. R. (2018). Photodegradation mechanisms on poly(ε-caprolactone) (PCL). Materials Research, 21(5), e20170837. https://doi.org/10.1590/1980-5373-mr-2017-0837
  • Ghasemi-Mobarakeh, L., Prabhakaran, M. P., Morshed, M., Nasr-Esfahani, M. H., & Ramakrishna, S. (2008). Electrospun poly(epsilon-caprolactone)/gelatin nano fibrous scaffolds for nerve tissue engineering. Biomaterials, 29(34), 4532–4539. https://doi.org/10.1016/j.biomaterials.2008.08.007
  • Ghassemi, T., Shahroodi, A., Ebrahimzadeh, M. H., Mousavian, A., Movaffagh, J., & Moradi, A. (2018). Current concepts in scaffolding for bone tissue engineering. The Archives of Bone and Joint Surgery, 6(2), 90–99.
  • Hamlekhan, A., Mozafari, M., Nezafati, N., Azami, M., & Hadipour, H. (2010). A proposed fabrication method of novel PCL-GEL-HAp nanocomposite scaffolds for bone tissue engineering application. Advanced Composites Letters, 19(4), 096369351001900401. https://doi.org/10.1177/096369351001900401
  • Hamlekhan, A., Moztarzadeh, F., Mozafari, M., Azami, M., & Nezafati, N. (2011). Preparation of laminated poly (ε-caprolactone)-gelatin-hydroxyapatitenanocomposite scaffold bioengineered via compound techniques for bonesubstitution. Journal Biomatter, 1(1), 91–101. https://doi.org/10.4161/biom.1.1.17445
  • Iron, R., Mehdikhani, M., Naghashzargar, E., Karbasi, S., & Semnani, D. (2019). Effects of nano-bioactive glass on structural, mechanical and bioactivity properties of poly(3-hydroxybutyrate) electrospun scaffold for bone tissue engineering applications. Materials Technology, 34(9), 540–548. https://doi.org/10.1080/10667857.2019.1591728
  • Jalaja, K., Sreehari, V., Kumar, P. A., & Nirmala, R. J. (2016). Graphene oxide decorated electrospun gelatin nanofibers: Fabrication, properties and applications. Materials Science & Engineering. C, Materials for Biological Applications, 64, 11–19. https://doi.org/10.1016/j.msec.2016.03.036
  • Lee, K. S., Kim, H., & Shim, S. B. (2013). Graphene: An emerging material for biological tissue engineering. Carbon Letters, 14(2), 63–75. https://doi.org/10.5714/CL.2013.14.2.063
  • Leung, V., & Ko, F. (2011). Biomedical applications of nanofibers. Polymers for Advanced Technologies, 22(3), 350–365. https://doi.org/10.1002/pat.1813
  • Li, W.-J., Mauck, R. L., Cooper, J. A., Yuan, X., & Tuan, R. S. (2007). Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal TE. Journal of Biomechanics, 40(8), 1686–1693. https://doi.org/10.1016/j.jbiomech.2006.09.004
  • Linh, N. T. B., Min, Y. K., & Lee, B. T. (2013). Hybrid hydroxyapatite nanoparticles-loaded PCL/GE blend fibers for bone tissue engineering. Journal of Biomaterials Science. Polymer Edition, 24(5), 520–538. https://doi.org/10.1080/09205063.2012.697696
  • Milovac, D., Ferrer, G. G., Ivankovic, M., & Ivankovic, H. (2014). PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: Morphology, mechanical properties and bioactivity. Materials Science & Engineering. C, Materials for Biological Applications, 34, 437–445. https://doi.org/10.1016/j.msec.2013.09.036
  • Naghashzargar, E., Farè, S., Catto, V., Bertoldi, S., Semnani, D., Karbasi, S., & Tanzi, M. C. (2015). Nano/micro hybrid scaffold of PCL or P3HB nanofibers combined with silk fibroin for tendon and ligament tissue engineering. Journal of Applied Biomaterials & Functional Materials, 13(2), 156–168. https://doi.org/10.5301/jabfm.5000216
  • Nikodem, A. (2012). Correlations between structural and mechanical properties of human trabecular femur bone. Acta of Bioengineering and Biomechanics, 14(2), 37–46.
  • Pereira, I. H. L., Ayres, E., Averous, L., Schlatter, G., Hebraud, A., de Paula, A. C. C., Viana, P. H. L., Goes, A. M., & Oréfice, R. L. (2014). Differentiation of human adiposederived stem cells seeded on mineralized electrospun co-axial poly(e-caprolactone)(PCL)/gelatin nanofibers. Journal of Materials Science. Materials in Medicine, 25(4), 1137–1148. https://doi.org/10.1007/s10856-013-5133-9
  • Petretta, M., Gambardella, A., Boi, M., Berni, M., Cavallo, C., Marchiori, G., Maltarello, M. C., Bellucci, D., Fini, M., Baldini, N., Grigolo, B., & Cannillo, V. (2021). Composite scaffolds for bone tissue regeneration based on PCL and Mg-containing bioactive glasses. Biology (Basel), 10(5), 398. https://doi.org/10.3390/biology10050398
  • Rajzer, I. (2014). Fabrication of bioactive polycaprolactone/hydroxyapatite scaffolds with final bilayer nano-/micro-fibrous structures for tissue engineering application. Journal of Materials Science, 49(16), 5799–5807. https://doi.org/10.1007/s10853-014-8311-3
  • Ramazani, S., & Karimi, M. (2015). Aligned poly(ε-caprolactone)/graphene oxide and reduced graphene oxide nanocomposite nanofibers: Morphological, mechanical and structural properties. Materials Science & Engineering. C, Materials for Biological Applications, 56, 325–334. https://doi.org/10.1016/j.msec.2015.06.045
  • Salgado, A. J., Coutinho, O. P., & Reis, R. L. (2004). Bone tissue engineering: State of the art and future trends. Macromolecular Bioscience, 4(8), 743–765. https://doi.org/10.1002/mabi.200400026
  • Sani, S. I. (2021). Preparation and characterization of polycaprolactone/chitosan-g-polycaprolactone/hydroxyapatite electrospun nanocomposite scaffolds for bone tissue engineering. International Journal of Biological Macromolecules, 182, 1638–1649.
  • Song, H., Zhang, Y., Zhang, Z., Xiong, S., Ma, X., & Li, Y. (2021). Hydroxyapatite/NELL-1 nanoparticles electrospun fibers for osteoinduction in bone tissue engineering application. International Journal of Nanomedicine, 16, 4321–4332. https://doi.org/10.2147/IJN.S309567
  • Stylianopoulos, T., Bashur, C. A., Goldstein, A. S., Guelcher, S. A., & Barocas, V. H. (2008). Computational predictions of the tensile properties of electrospun fibre meshes: Effect of fibre diameter and fibre orientation. Journal of the Mechanical Behavior of Biomedical Materials, 1(4), 326–335. https://doi.org/10.1016/j.jmbbm.2008.01.003
  • Trakoolwannachai, V., Kheolamai, P., & Ummartyotin, S. (2019). Characterization of hydroxyapatite from eggshell waste and polycaprolactone (PCL) composite for scaffold material. Composite Part B: Engineering, 173, 106974. https://doi.org/10.1016/j.compositesb.2019.106974
  • Vatankhah, E., Semnani, D., Prabhakaran, M. P., Tadayon, M., Razavi, S., & Ramakrishna, S. (2014). Artificial neural network for modeling the elastic modulus of electrospun polycaprolactone/gelatin scaffolds. Acta Biomaterialia, 10(2), 709–721. https://doi.org/10.1016/j.actbio.2013.09.015
  • Venugopal, J. R., Low, S., Choon, A., Kumar, A., & Ramakrishna, S. (2008). Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration. Artificial Organs, 32(5), 388–397. https://doi.org/10.1111/j.1525-1594.2008.00557.x
  • Yoshimoto, H., Shin, Y. M., Terai, H., & Vacanti, J. P. (2003). A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials, 24(12), 2077–2082. https://doi.org/10.1016/s0142-9612(02)00635-x
  • Zhang, Y., Ouyang, H., Lim, C. T., Ramakrishna, S., & Huang, Z. M. (2005). Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 72(1), 156–165. https://doi.org/10.1002/jbm.b.30128
  • Zhang, Y., Ouyang, H., Lim, T. C., Ramakrishna, S., & Huan, M. Z. (2005). Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. InterScience, 43, 156–165. https://doi.org/10.1002/jbm.b.30128

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.