355
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Prediction of elastic properties of thermoplastic composites with natural fibers

, ORCID Icon, , &
Pages 1488-1496 | Received 27 Oct 2021, Accepted 20 Sep 2022, Published online: 10 Oct 2022

References

  • Adeniyi, A. G., Adeoye, A. S., Ighalo, J. O., & Onifade, D. V. (2021). FEA of effective elastic properties of banana fiber-reinforced polystyrene composite. Mechanics of Advanced Materials and Structures, 28(18), 1869–1877. https://doi.org/10.1080/15376494.2020.1712628
  • Affdl, J. H., & Kardos, J. (1976). The Halpin‐Tsai equations: A review. Polymer Engineering and Science, 16(5), 344–352. https://doi.org/10.1002/pen.760160512
  • Alemi Parvin, S., Ahmed, N. A., & Fattahi, A. M. (2021). Numerical prediction of elastic properties for carbon nanotubes reinforced composites using a multi-scale method. Engineering with Computers, 37(3), 1961–1972. https://doi.org/10.1007/s00366-019-00925-8
  • Alhijazi, M., Safaei, B., Zeeshan, Q., & Asmael, M. (2021). Modeling and simulation of the elastic properties of natural fiber‐reinforced thermosets. Polymer Composites, 42(7), 3508–3517. https://doi.org/10.1002/pc.26075
  • Alhijazi, M., Safaei, B., Zeeshan, Q., Asmael, M., Eyvazian, A., & Qin, Z. (2020). Recent developments in Luffa natural fiber composites. Sustainability, 12(18), 7683. https://doi.org/10.3390/su12187683
  • Alhijazi, M., Safaei, B., Zeeshan, Q., Asmael, M., Harb, M., & Qin, Z. (2022). An experimental and metamodeling approach to tensile properties of natural fibers composites. Journal of Polymers and the Environment, 30(10), 4377–4393. https://doi.org/10.1007/s10924-022-02514-1
  • Alhijazi, M., Zeeshan, Q., Qin, Z., Safaei, B., & Asmael, M. (2020). Finite element analysis of natural fibers composites: A review. Nanotechnology Reviews, 9(1), 853–875. https://doi.org/10.1515/ntrev-2020-0069
  • Alhijazi, M., Zeeshan, Q., Safaei, B., Asmael, M., & Qin, Z. (2020). Recent developments in palm fibers composites: A review. Journal of Polymers and the Environment, 28(12), 3029–3054. https://doi.org/10.1007/s10924-020-01842-4
  • AlMaadeed, M. A., Kahraman, R., Noorunnisa Khanam, P., & Madi, N. (2012). Date palm wood flour/glass fibre reinforced hybrid composites of recycled polypropylene: Mechanical and thermal properties. Materials & Design, 42, 289–294. https://doi.org/10.1016/j.matdes.2012.05.055
  • Biswas, K., Bandyopadhyay, J., & De, D. (2019). A computational study on the quantum transport properties of silicene–graphene nano-composites. Microsystem Technologies, 25(5), 1881–1899. https://doi.org/10.1007/s00542-018-3726-4
  • Chen, Q., Shi, Q., Gorb, S. N., & Li, Z. (2014). A multiscale study on the structural and mechanical properties of the luffa sponge from Luffa cylindrica plant. Journal of Biomechanics, 47(6), 1332–1339. https://doi.org/10.1016/j.jbiomech.2014.02.010
  • Chen, S.-X., Sahmani, S., & Safaei, B. (2021). Size-dependent nonlinear bending behavior of porous FGM quasi-3D microplates with a central cutout based on nonlocal strain gradient isogeometric finite element modelling. Engineering with Computers, 37(2), 1657–1678. https://doi.org/10.1007/s00366-021-01303-z
  • Chennouf, N., Agoudjil, B., Alioua, T., Boudenne, A., & Benzarti, K. (2019). Experimental investigation on hygrothermal performance of a bio-based wall made of cement mortar filled with date palm fibers. Energy and Buildings, 202, 109413. https://doi.org/10.1016/j.enbuild.2019.109413
  • Djebloun, Y., Hecini, M., Djoudi, T., & Guerira, B. (2019). Experimental determination of elastic modulus of elasticity and Poisson’s coefficient of date palm tree fiber. Journal of Natural Fibers, 16(3), 357–367. https://doi.org/10.1080/15440478.2017.1423256
  • Fan, F., Cai, X., Sahmani, S., & Safaei, B. (2021). Isogeometric thermal postbuckling analysis of porous FGM quasi-3D nanoplates having cutouts with different shapes based upon surface stress elasticity. Composite Structures, 262, 113604. https://doi.org/10.1016/j.compstruct.2021.113604
  • Genc, G., Sarikas, A., Kesen, U., & Aydin, S. (2020). Luffa/Epoxy composites: Electrical properties for PCB application. IEEE Transactions on Components, Packaging and Manufacturing Technology, 10(6), 933–940. https://doi.org/10.1109/TCPMT.2020.2988456
  • Hemmat Esfe, M., Esfandeh, S., & Bahiraei, M. (2022). A two-phase simulation for investigating natural convection characteristics of nanofluid inside a perturbed enclosure filled with porous medium. Engineering with Computers, 38(3), 2451–2468. https://doi.org/10.1007/s00366-020-01204-7
  • Jamaluddin, J. F., Firouzi, A., Islam, M. R., & Yahaya, A. N. A. (2020). Effects of luffa and glass fibers in polyurethane-based ternary sandwich composites for building materials. SN Applied Sciences, 2(7), 1–10. https://doi.org/10.1007/s42452-020-3037-0
  • Javanbakht, Z., Hall, W., Virk, A. S., Summerscales, J., & Öchsner, A. (2020). Finite element analysis of natural fiber composites using a self-updating model. Journal of Composite Materials, 54(23), 3275–3286. https://doi.org/10.1177/0021998320912822
  • Jeyapragash, R., Srinivasan, V., & Sathiyamurthy, S. (2020). Mechanical properties of natural fiber/particulate reinforced epoxy composites–A review of the literature. Materials Today: Proceedings, 22, 1223–1227.
  • Karthi, N. (2020). An overview: Natural fiber reinforced hybrid composites, chemical treatments and application areas. Materials Today: Proceedings, 27, 2828–2834.
  • Kaveh, A., Dadras, A., & Geran Malek, N. (2019). Optimum stacking sequence design of composite laminates for maximum buckling load capacity using parameter-less optimization algorithms. Engineering with Computers, 35(3), 813–832. https://doi.org/10.1007/s00366-018-0634-2
  • Kebir, H., & Ayad, R. (2014). A specific finite element procedure for the analysis of elastic behaviour of short fibre reinforced composites. The Projected Fibre approach. Composite Structures, 118, 580–588. https://doi.org/10.1016/j.compstruct.2014.07.046
  • Khalevitsky, Y. V., & Konovalov, A. V. (2019). A gravitational approach to modeling the representative volume geometry of particle-reinforced metal matrix composites. Engineering with Computers, 35(3), 1037–1044. https://doi.org/10.1007/s00366-018-0649-8
  • Liu, T., Wang, A., Wang, Q., & Qin, B. (2020). Wave based method for free vibration characteristics of functionally graded cylindrical shells with arbitrary boundary conditions. Thin-Walled Structures, 148, 106580. https://doi.org/10.1016/j.tws.2019.106580
  • Mahdavi, S., Kermanian, H., & Varshoei, A. (2010). Comparison of mechanical properties of date palm fiber-polyethylene composite. BioResources, 5(4), 2391–2403.
  • Mittal, V., Saini, R., & Sinha, S. (2016). Natural fiber-mediated epoxy composites–A review. Composites Part B: Engineering, 99, 425–435. https://doi.org/10.1016/j.compositesb.2016.06.051
  • Mohana Krishnudu, D. (2020). Influence of filler on mechanical and di-electric properties of coir and Luffa cylindrica fiber reinforced epoxy hybrid composites. Journal of Natural Fibers, 17, 1–10.
  • Moradi-Dastjerdi, R., & Behdinan, K. (2021). Temperature effect on free vibration response of a smart multifunctional sandwich plate. Journal of Sandwich Structures & Materials, 23(6), 2399–2421. https://doi.org/10.1177/1099636220908707
  • Moradi-Dastjerdi, R., Rashahmadi, S., & Meguid, S. A. (2022). Electro-mechanical performance of smart piezoelectric nanocomposite plates reinforced by zinc oxide and gallium nitride nanowires. Mechanics Based Design of Structures and Machines, 50(6), 1954–1967. https://doi.org/10.1080/15397734.2020.1766496
  • Mulinari, D. R., Marina, A. J., & Lopes, G. S. (2015). Mechanical properties of the palm fibers reinforced HDPE composites. International Journal of Chemical and Molecular Engineering, 9(7), 903–906.
  • Navaneethakrishnan, G. (2020). Structural analysis of natural fiber reinforced polymer matrix composite. Materials Today: Proceedings, 21, 7–9.
  • Pan, S., Dai, Q., Safaei, B., Qin, Z., & Chu, F. (2021). Damping characteristics of carbon nanotube reinforced epoxy nanocomposite beams. Thin-Walled Structures, 166, 108127. https://doi.org/10.1016/j.tws.2021.108127
  • Peng, G., Wu, C.-C., Diao, C.-C., & Yang, C.-F. (2018). Investigation of the composites of epoxy and micro-scale BaTi4O9 ceramic powder as the substrate of microwave communication circuit. Microsystem Technologies, 24(1), 343–349. https://doi.org/10.1007/s00542-017-3367-z
  • Pires, C. (2020). Thermomechanical and thermo-hydro-mechanical treatments of Luffa cylindrical fibers. Journal of Natural Fibers, 17, 1–13.
  • Qin, B., Zhong, R., Wang, T., Wang, Q., Xu, Y., & Hu, Z. (2020). A unified Fourier series solution for vibration analysis of FG-CNTRC cylindrical, conical shells and annular plates with arbitrary boundary conditions. Composite Structures, 232, 111549. https://doi.org/10.1016/j.compstruct.2019.111549
  • Rajkumar, D. R., Santhy, K., & Padmanaban, K. P. (2021). Influence of mechanical properties on modal analysis of natural fiber reinforced laminated composite trapezoidal plates. Journal of Natural Fibers, 18(12), 2139–2155. https://doi.org/10.1080/15440478.2020.1724230
  • Rao, R., Ye, Z., Yang, Z., Sahmani, S., & Safaei, B. (2022). Nonlinear buckling mode transition analysis of axial–thermal–electrical-loaded FG piezoelectric nanopanels incorporating nonlocal and couple stress tensors. Archives of Civil and Mechanical Engineering, 22(3), 125. https://doi.org/10.1007/s43452-022-00437-1
  • Rasdorf, W. J., Spainhour, L. K., Patton, E. M., & Burns, B. P. (1993). A design environment for laminated fiber-reinforced thick composite materials. Engineering with Computers, 9(1), 36–48. https://doi.org/10.1007/BF01198252
  • Safaei, B. (2021). Frequency-dependent damped vibrations of multifunctional foam plates sandwiched and integrated by composite faces. The European Physical Journal Plus, 136(6), 646. https://doi.org/10.1140/epjp/s13360-021-01632-4
  • Safaei, B., Chukwueloka Onyibo, E., & Hurdoganoglu, D. (2022). Effect of static and harmonic loading on the honeycomb sandwich beam by using finite element method. Facta Universitatis, Series: Mechanical Engineering, 20(2), 279–306.
  • Safaei, B., Khoda, F. H., & Fattahi, A. (2019). Non-classical plate model for single-layered graphene sheet for axial buckling. Advances in Nano Research, 7, 265–275.
  • Sahmani, S., & Safaei, B. (2020). Influence of homogenization models on size-dependent nonlinear bending and postbuckling of bi-directional functionally graded micro/nano-beams. Applied Mathematical Modelling, 82, 336–358. https://doi.org/10.1016/j.apm.2020.01.051
  • Sathishkumar, T. P., Navaneethakrishnan, P., Shankar, S., Rajasekar, R., & Rajini, N. (2013). Characterization of natural fiber and composites – A review. Journal of Reinforced Plastics and Composites, 32(19), 1457–1476. https://doi.org/10.1177/0731684413495322
  • Schlabach, S., Ochs, R., Hanemann, T., & Szabó, D. V. (2011). Nanoparticles in polymer-matrix composites. Microsystem Technologies, 17(2), 183–193. https://doi.org/10.1007/s00542-010-1176-8
  • Sendeckyj, G. P., Wang, S. S., Steven Johnson, W., Stinchcomb, W. W., & Chamis, C. C. (1989). Mechanics of composite materials: Past, present, and future. Journal of Composites Technology and Research, 11(1), 3–14. https://doi.org/10.1520/CTR10143J
  • Spainhour, L. K., & Rasdorf, W. J. (1997). Development of an information model for composites design data. Engineering with Computers, 13(1), 48–64. https://doi.org/10.1007/BF01201860
  • Sudheer, M., Pradyoth, K., & Somayaji, S. (2015). Analytical and numerical validation of epoxy/glass structural composites for elastic models. American Journal of Materials Science, 5, 162–168.
  • Swati, R. F., Elahi, H., Wen, L. H., Khan, A. A., Shad, S., & Mughal, M. R. (2019). Investigation of tensile and in-plane shear properties of carbon fiber reinforced composites with and without piezoelectric patches for micro-crack propagation using extended finite element method. Microsystem Technologies, 25(6), 2361–2370. https://doi.org/10.1007/s00542-018-4120-y
  • Swati, R. F., Wen, L. H., Elahi, H., Khan, A. A., & Shad, S. (2019). Extended finite element method (XFEM) analysis of fiber reinforced composites for prediction of micro-crack propagation and delaminations in progressive damage: A review. Microsystem Technologies, 25(3), 747–763. https://doi.org/10.1007/s00542-018-4021-0
  • Taban, E., Khavanin, A., Faridan, M., Samaei, S. E., Samimi, K., & Rashidi, R. (2020). Comparison of acoustic absorption characteristics of coir and date palm fibers: Experimental and analytical study of green composites. International Journal of Environmental Science and Technology, 17(1), 39–48. https://doi.org/10.1007/s13762-019-02304-8
  • Wambua, P., Ivens, J., & Verpoest, I. (2003). Natural fibres: Can they replace glass in fibre reinforced plastics? Composites Science and Technology, 63(9), 1259–1264. https://doi.org/10.1016/S0266-3538(03)00096-4
  • Xu, C., Rong, D., Zhou, Z., Deng, Z., & Lim, C. W. (2020). Vibration and buckling characteristics of cracked natural fiber reinforced composite plates with corner point-supports. Engineering Structures, 214, 110614. https://doi.org/10.1016/j.engstruct.2020.110614
  • Yang, X., Sahmani, S., & Safaei, B. (2021). Postbuckling analysis of hydrostatic pressurized FGM microsized shells including strain gradient and stress-driven nonlocal effects. Engineering with Computers, 37(2), 1549–1564. https://doi.org/10.1007/s00366-019-00901-2
  • Yuan, Y., Zhao, K., Han, Y., Sahmani, S., & Safaei, B. (2020). Nonlinear oscillations of composite conical microshells with in-plane heterogeneity based upon a couple stress-based shell model. Thin-Walled Structures, 154, 106857. https://doi.org/10.1016/j.tws.2020.106857
  • Yuan, Y., Zhao, K., Zhao, Y., Sahmani, S., & Safaei, B. (2020). Couple stress-based nonlinear buckling analysis of hydrostatic pressurized functionally graded composite conical microshells. Mechanics of Materials, 148, 103507. https://doi.org/10.1016/j.mechmat.2020.103507
  • Zhong, B., Li, C., & Li, P. (2020). Modeling and vibration analysis of sectional-laminated cylindrical thin shells with arbitrary boundary conditions. Applied Acoustics, 162, 107184. https://doi.org/10.1016/j.apacoust.2019.107184

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.