156
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Novel method of obtaining textile fabrics with self-cleaning and antimicrobial properties

& ORCID Icon
Pages 1509-1517 | Received 30 Mar 2022, Accepted 13 Sep 2022, Published online: 13 Oct 2022

References

  • Abdouss, M., Mousavi, A., Shoushtari, A., Haji, A., & Moshref, B. (2012). Fabrication of chelating diethylenetriaminated PAN micro- and nano-fibres for heavy metal removal. Chemical Industry and Chemical Engineering Quarterly, 18(1), 27–34. https://doi.org/10.2298/CICEQ110719043A
  • Adebajo, M. O., Frost, R. L., Kloprogge, J. T., Carmody, O., & Kokot, S. (2003). Porous materials for oil spill cleanup: A revive of synthesis and absorbing properties. Journal of Porous Materials, 10(3), 159–170. https://doi.org/10.1023/A:1027484117065
  • Ahmad, I., & Kan, C. W. (2017). Visible-light-driven, dye-sensitized TiO2 photo-catalyst for self-cleaning cotton fabrics. Coatings, 7(11), 192. https://doi.org/10.3390/coatings7110192
  • Ahmad, I., Kan, C., & Yao, Z. (2019). Photoactive cotton fabric for UV protection and self-cleaning. RSC Advances, 9(32), 18106–18114. https://doi.org/10.1039/c9ra02023c
  • Altangerel, Z., Purev-Ochir, B., Ganzorig, A., Tsagaantsooj, T., Lkhamsuren, G., Choisuren, A., & Chimed, G. (2020). Superhydrophobic modification and characterization of cashmere fiber surfaces by wet coating techniques of silica nanoparticles. Surfaces and Interfaces, 19, 100533. https://doi.org/10.1016/j.surfin.2020.100533
  • Chan-Juan, Z., Dan, T., & Ji-Huan, H. (2018). What factors affect lotus effect? Thermal Science, 22(4), 1737–1743. [CrossRef][10.2298/TSCI1804737Z]
  • Chauhan, P., Kumar, A., & Bhushan, B. (2019). Self-cleaning, stain-resistant and anti-bacterial superhydrophobic cotton fabric prepared by simple immersion technique. Journal of Colloid and Interface Science, 535, 66–74. https://doi.org/10.1016/j.jcis.2018.09.087
  • Diaa, M., & Hassabo, A. G. (2022). Self-cleaning properties of cellulosic fabrics (a review). Biointerface Research in Applied Chemistry, 12, 1847–1855.
  • Foorginezhad, S., & Zerafat, M. M. (2019). Fabrication of stable fluorine-free superhydrophobic fabrics for anti-adhesion and self-cleaning properties. Applied Surface Science, 464, 458–471. https://doi.org/10.1016/j.apsusc.2018.09.058
  • Han, C. H., & Min, B. G. (2020). Superhydrophobic and antibacterial properties of cotton fabrics coated with copper nanoparticles through sonochemical process. Fibers and Polymers, 21(4), 785–791. https://doi.org/10.1007/s12221-020-9925-5
  • Hasan, M. S., & Nosonovsky, M. (2020). Lotus effect and friction: Does nonsticky mean slippery? Biomimetics, 5(2), 28. https://doi.org/10.3390/biomimetics5020028
  • Hu, M., Wu, Z., Sun, L., Guo, S., Li, H., Liao, J., Huang, C., & Wang, B. (2019). Improving pervaporation performance of PDMS membranes by interpenetrating polymer network for recovery of bio-butanol. Separation and Purification Technology, 228, 115690. https://doi.org/10.1016/j.seppur.2019.115690
  • Koozekonan, A. G., Esmaeilpour, M. R. M., Kalantary, S., Karimi, A., Azam, K., Moshiran, V. A., & Golbabaei, F. (2021). Fabrication and characterization of PAN/CNT, PAN/TiO2, and PAN/CNT/TiO2 nanofibers for UV protection properties. The Journal of The Textile Institute, 112(6), 946–954. https://doi.org/10.1080/00405000.2020.1813408
  • Krifa, M., & Prichard, C. (2020). Nanotechnology in textile and apparel research: An overview of technologies and processes. The Journal of The Textile Institute, 111(12), 1778–1793. https://doi.org/10.1080/00405000.2020.1721696
  • Ławińska, K., Serweta, W., & Gendaszewska, D. (2018). Applications of bamboo textiles in individualized children’s footwear. Fibres&Textiles in Eastern Europe, 26(5), 87–92. https://doi.org/10.5604/01.3001.0012.2537
  • Ławińska, K., Serweta, W., Popovych, N., Sieczyńska, K., Decka, S., Woźnicki, D., Ogrodowczyk, D., Rostocki, A., & Sprynskyy, M. (2021). Microbiological and chemical analysis of bamboo textile materials and leathers modified with bamboo extract at the tanning stage. Fibres and Textiles in Eastern Europe, 29(3), 33–39. https://doi.org/10.5604/01.3001.0014.7785
  • Liu, K., & Jiang, L. (2012). Bio-inspired self-cleaning surfaces. Annual Review of Materials Research, 42(1), 231–263. https://doi.org/10.1146/annurev-matsci-070511-155046
  • Nazari, A. (2019). Superior self-cleaning and antimicrobial properties on cotton fabrics using nano titanium dioxide along with green walnut shell dye. Fibers and Polymers, 20(12), 2503–2509. https://doi.org/10.1007/s12221-019-1135-7
  • Pakdel, E., Zhao, H., Wang, J., Tang, B., Varley, R. J., & Wang, X. (2021). Superhydrophobic and photocatalytic self-cleaning cotton fabric using flower-like N-doped TiO2/PDMS coating. Cellulose, 28(13), 8807–8820. https://doi.org/10.1007/s10570-021-04075-3
  • Portellaa, E. H., Romanzinib, D., Angrizanib, C. C., Amicob, S. C., & Zatteraa, A. J. (2016). Influence of stacking sequence on the mechanical and dynamic mechanical properties of cotton/glass fiber reinforced polyester composites. Material Research, 19, 542-547.
  • Shao, Y., Zhao, J., Fan, Y., Wan, Z., Lu, L., Zhang, Z., Ming, W., & Ren, L. (2020). Shape memory superhydrophobic surface with switchable transition between “lotus effect” to “rose petal effect”. Chemical Engineering Journal, 382, 122989. https://doi.org/10.1016/j.cej.2019.122989
  • Thi, V. H. T., & Lee, B. K. (2017). Development of multifunctional self-cleaning and UV blocking cotton fabric with modification of photoactive ZnO coating via microwave method. Journal of Photochemistry and Photobiology A: Chemistry, 338, 13–22. https://doi.org/10.1016/j.jphotochem.2017.01.020
  • Tudu, B. K., Sinhamahapatra, A., & Kumar, A. (2020). Surface modification of cotton fabric using TiO2 nanoparticles for self-cleaning, oil–water separation, antistain, anti-water absorption, and antibacterial properties. ACS Omega, 5(14), 7850–7860. https://doi.org/10.1021/acsomega.9b04067
  • Wan, J., Xu, L.-H., Pan, H., Wang, L.-M., & Shen, Y. (2021). Green water-based fabrication of SiO2–TiO2 aerogels with superhydrophobic and photocatalytic properties and their application on cotton fabric. Journal of Porous Materials, 28(5), 1501–1510. https://doi.org/10.1007/s10934-021-01089-x
  • Wu, Z., Fang, K., Chen, W., Zhao, Y., Xu, Y., & Zhang, C. (2021). Durable superhydrophobic and photocatalytic cotton modified by PDMS with TiO2 supported bamboo charcoal nanocomposites. Industrial Crops and Products, 171, 113896. https://doi.org/10.1016/j.indcrop.2021.113896
  • Wyrębska, Ł., Szuster, L., Masłowska-Lipowicz, I., Ławińska, K., & Jagiełło, J. (2020). Permethrin application on polyamide and polyamide-polypropylene knitter fabrics. Fibres&Textiles in Eastern Europe, 28, 72–75.
  • Yang, M., Liu, W., Jiang, C., Liu, C., He, S., Xie, Y., & Wang, Z. (2019). Robust fabrication of superhydrophobic and photocatalytic self-cleaning cotton textile based on TiO2 and fluoroalkylsilane. Journal of Materials Science, 54(3), 2079–2092. https://doi.org/10.1007/s10853-018-3001-1
  • Zhu, C., Shi, J., Xu, S., Ishimori, M., Sui, J., & Morikawa, H. (2017). Design and characterization of self-cleaning cotton fabrics exploiting zinc oxide nanoparticle-triggered photocatalytic degradation. Cellulose, 24(6), 2657–2667. https://doi.org/10.1007/s10570-017-1289-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.