343
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Performance analysis of multilayer flame-retardant fabric ensembles for different exposure conditions using numerical modeling

, , ORCID Icon, , , & show all
Pages 218-227 | Received 21 Sep 2022, Accepted 06 Dec 2022, Published online: 18 Dec 2022

References

  • Barker, R. L., & Young, M. L. (1987). Analyzing the transient thermophysical properties of heat-resistant fabrics in TPP exposures. Textile Research Journal, 57(6), 331–338. https://doi.org/10.1177/004051758705700603
  • Benisek, L., Edmondson, G. K., & Phillips, W. A. (1979). Protective clothing–evaluation of wool and other fabrics. Textile Research Journal, 49(4), 212–221. https://doi.org/10.1177/004051757904900405.
  • Denny, V. E., & Clever, R. M. (1974). Comparisons of Galerkin and finite difference methods for solving highly nonlinear thermally driven flows. Journal of Computational Physics, 16(3), 271–284. https://doi.org/10.1016/0021-9991(74)90095-3
  • Engineering-Toolbox. (2003). Solids, liquids and gases - Thermal conductivities. In Thermal conductivity of selected materials and gases. https://www.engineeringtoolbox.com/thermal-conductivity-d_429.html
  • Engineering-Toolbox. (n.d). Solids - Specific heats. http://www.engineeringtoolbox.com/specific-heat-solids-d_154.html
  • Parker, W.J. & Filipczak, R. (1993). Modeling the heat release rate of aircraft cabin panels. Gaithersburg, MD: National Inst of Standards and Technology.
  • Ghazy, A. (2014). Numerical study of the air gap between fire-protective clothing and the skin. Journal of Industrial Textiles, 44(2), 257–274. https://doi.org/10.1177/1528083713483784
  • Ghazy, A. (2017). The thermal protective performance of firefighters’ clothing: The air gap between the clothing and the body. Heat Transfer Engineering, 38(10), 975–986. https://doi.org/10.1080/01457632.2016.1212583
  • Ghazy, A., & Bergstrom, D. J. (2010). Numerical simulation of transient heat transfer in a protective clothing system during a flash fire exposure. Numerical Heat Transfer. Part A: Applications, 58(9), 702–724. https://doi.org/10.1080/10407782.2010.516691
  • Ghazy, A., & Bergstrom, D. J. (2012). Numerical simulation of heat transfer in firefighters’ protective clothing with multiple air gaps during flash fire exposure. Numerical Heat Transfer. Part A: Applications, 61(8), 569–593. https://doi.org/10.1080/10407782.2012.666932
  • GROUP, V. E. (n.d). TeijinConex - Teijin - Page - PDF Catalogs _ Technical Documentation _ Brochure. Direct Industry. https://pdf.directindustry.com/pdf/teijin/teijinconex/191910-723130-_7.html
  • Holman, J. P. (1999). Heat transfer (10th ed., Vol. 15, Issue 3). McGraw-Hill. https://doi.org/10.1080/01973762.1999.9658510
  • Hsu, S., T'ien, J., Takahashi, F., & Olson, S. (2011). Modeling heat transfer in thin fire blanket materials under high external heat fluxes. Fire Safety Science, 10, 973–986. https://doi.org/10.3801/IAFSS.FSS.10-973
  • Kukuck, S., & Prasad, K. (2003). Thermal performance of fire fighters’ protective clothing.3. Simulating a TPP test for single-layered fabrics. In National Institute of Standards and Technology. U.S. Department of Commerce.
  • Kutlu, B., & Cireli, A. (2005). Thermal analysis and performance properties of thermal protective clothing. Fibres and Textiles in Eastern Europe, 13(3), 58–62.
  • Liu, G., Liu, Y., & Zhao, X. (2018). A study of the thermal protective performance of the outer fabric material for fire proximity suits. The Journal of the Textile Institute, 109(7), 851–857. https://doi.org/10.1080/00405000.2017.1378399
  • Mercer, G., & Sidhu, H. (2008). Mathematical modelling of the effect of fire exposure on a new type of protective clothing. ANZIAM Journal, 48, 289. https://doi.org/10.21914/anziamj.v49i0.346
  • Modest, M. F. (2013). Radiative heat transfer. Elsevier Science. https://doi.org/10.1016/C2010-0-65874-3
  • Nayak, R., Houshyar, S., & Padhye, R. (2014). Recent trends and future scope in the protection and comfort of fire-fighters’ personal protective clothing. Fire Science Reviews, 3(1), 1–19. https://doi.org/10.1186/s40038-014-0004-0
  • Rajput, B., Dubey, R., Ray, B., Das, A., & Talukdar, P. (2022). Numerical modeling of simultaneous heat and moisture transport in fire protective suits under flash fire exposure and evaluation of second-degree burn time. Journal of Heat Transfer, 144(5), 1–10. https://doi.org/10.1115/1.4053512
  • Shakeriaski, F., Ghodrat, M., & Nelson, D. J. (2022). Experimental and numerical studies on efficiency characterization of firefighters’ protective clothing: A review. Journal of the Textile Institute, 113(11), 2549–2568. https://doi.org/10.1080/00405000.2021.1994739
  • Song, G., Ding, D., & Chitrphiromsri, P. (2008). Numerical simulations of heat and moisture transport in thermal protective clothing under flash fire conditions. International Journal of Occupational Safety and Ergonomics, 14(1), 89–106. https://doi.org/10.1080/10803548.2008.11076752
  • Song, G., Paskaluk, S., Sati, R., Crown, E. M., Doug Dale, J., & Ackerman, M. (2011). Thermal protective performance of protective clothing used for low radiant heat protection. Textile Research Journal, 81(3), 311–323. https://doi.org/10.1177/0040517510380108
  • Su, Y., He, J., & Li, J. (2017). Numerical simulation of heat transfer in protective clothing with various heat exposure distances. Journal of the Textile Institute, 108(8), 1412–1420. https://doi.org/10.1080/00405000.2016.1254591
  • Torvi, D. A., & Dale, J. D. (1998). Resistant fabrics for flash fires fabric/air gap/test sensor system. Textile Research Journal, 68(11), 787–796. https://doi.org/10.1177/004051759806801102
  • Torvi, D. A., & Dale, J. D. (1999). Heat transfer in thin fibrous materials under high heat flux. Fire Technology, 35(3), 210–231. https://doi.org/10.1023/A:1015484426361
  • U.S.Fire Administration. (1993). Minimum standards on structural fire fighting protective clothing and equipment: A guide for fire service education and procurement federal emergency management agency United States Fire Administration. September.
  • Udayraj, Talukdar, P., Alagirusamy, R., & Das, A. (2014). Heat transfer analysis and second degree burn prediction in human skin exposed to flame and radiant heat using dual phase lag phenomenon. International Journal of Heat and Mass Transfer, 78, 1068–1079. https://doi.org/10.1016/j.ijheatmasstransfer.2014.07.073
  • Udayraj, Talukdar, P., Das, A., & Alagirusamy, R. (2017a). Effect of structural parameters on thermal protective performance and comfort characteristic of fabrics. The Journal of the Textile Institute, 108(8), 1430–1441. https://doi.org/10.1080/00405000.2016.1255123
  • Udayraj, Talukdar, P., Das, A., & Alagirusamy, R. (2017b). Numerical modeling of heat transfer and fluid motion in air gap between clothing and human body: Effect of air gap orientation and body movement. International Journal of Heat and Mass Transfer, 108, 271–291. https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.016
  • Udayraj & Wang, F. (2018). A three-dimensional conjugate heat transfer model for thermal protective clothing. International Journal of Thermal Sciences, 130(April), 28–46. https://doi.org/10.1016/j.ijthermalsci.2018.04.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.