240
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Dynamic mechanical response of carbon nanotube yarns and their in situ electrical measurements

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 118-129 | Received 30 Jun 2022, Accepted 26 Nov 2022, Published online: 20 Apr 2023

References

  • Abot, J. L., Song, Y., Vatsavaya, M. S., Medikonda, S., Kier, Z., Jayasinghe, C., Rooy, N., Shanov, V. N., & Schulz, M. J. (2010). Delamination detection with carbon nanotube thread in self-sensing composite materials. Composites Science and Technology, 70(7), 1113–1119. https://doi.org/10.1016/j.compscitech.2010.02.022
  • Abu-Obaid, A., Heider, D., & Gillespie, J. W. Jr. (2015). Investigation of electro-mechanical behavior of carbon nanotube yarns during tensile loading. Carbon, 93, 731–741. https://doi.org/10.1016/j.carbon.2015.05.091
  • Ali, A., Sattar, M., Riaz, T., Khan, B. A., Awais, M., Militky, J., & Noman, M. T. (2022). Highly stretchable durable electro-thermal conductive yarns made by deposition of carbon nanotubes. Journal of the Textile Institute, 113(1), 80–89. https://doi.org/10.1080/00405000.2020.1863569
  • Aliev, A. E., Guthy, C., Zhang, M., Fang, S., Zakhidov, A. A., Fischer, J. E., & Baughman, R. H. (2007). Thermal transport in MWCNT sheets and yarns. Carbon, 45(15), 2880–2888. https://doi.org/10.1016/j.carbon.2007.10.010
  • Anike, J. C., Belay, K., & Abot, J. L. (2018). Piezoresistive response of carbon nanotube yarns under tension: Parametric effects and phenomenology. New Carbon Materials, 33(2), 140–154. https://doi.org/10.1016/S1872-5805(18)60331-2
  • Anike, J. C., Belay, K., & Abot, J. L. (2019). Effect of twist on the electromechanical properties of carbon nanotube yarns. Carbon, 142, 491–503. https://doi.org/10.1016/j.carbon.2018.10.067
  • Anike, J. C., Le, H. H., Brodeur, G. E., Kadavan, M. M., & Abot, J. L. (2017). Piezoresistive response of integrated CNT yarns under compression and tension: The effect of lateral constraint. C, 3(2), 14. https://doi.org/10.3390/c3020014
  • Avilés, F., Cauich-Rodríguez, J. V., Moo-Tah, L., May-Pat, A., & Vargas-Coronado, R. (2009). Evaluation of mild acid oxidation treatments for MWCNT functionalization. Carbon, 47(13), 2970–2975. https://doi.org/10.1016/j.carbon.2009.06.044
  • Balam, A., Cen-Puc, M., Rodríguez-Uicab, O., Abot, J. L., & Avilés, F. (2020). Cyclic thermoresistivity of freestanding and polymer embedded carbon nanotube yarns. Advanced Engineering Materials, 22(10), 2000220. https://doi.org/10.1002/adem.202000220
  • Belaadi, A., Bezazi, A., Maache, M., & Scarpa, F. (2014). Fatigue in sisal fiber reinforced polyester composites: Hysteresis and energy dissipation. Procedia Engineering, 74, 325–328. https://doi.org/10.1016/j.proeng.2014.06.272
  • Dau, V. T., Tran, C. D., Bui, T. T., Nguyen, V. D. X., & Dinh, T. X. (2016). Piezo-resistive and thermo-resistance effects of highly-aligned CNT based macrostructures. RSC Advances, 6(108), 106090–106095. https://doi.org/10.1039/C6RA22872K
  • Day, R. J., & Cauich-Rodrigez, J. V. (1998). Investigation of the micromechanics of the microbond test. Composites Science and Technology, 58(6), 907–914. https://doi.org/10.1016/S0266-3538(97)00197-8
  • Dresselhaus, M. S., Dresselhaus, G., Saito, R., & Jorio, A. (2005). Raman spectroscopy of carbon nanotubes. Physics Reports, 409(2), 47–99. https://doi.org/10.1016/j.physrep.2004.10.006
  • Ellyin, F., & Kujawski, D. (1984). Plastic strain energy in fatigue failure. Journal of Pressure Vessel Technology, 106(4), 342–347. https://doi.org/10.1115/1.3264362
  • Filleter, T., Bernal, R., Li, S., & Espinosa, H. D. (2011). Ultrahigh strength and stiffness in cross-linked hierarchical carbon nanotube bundles. Advanced Materials (Deerfield Beach, Fla.), 23(25), 2855–2860. https://doi.org/10.1002/adma.201100547
  • Gamstedt, E. K., Skrifvars, M., Jacobsen, T. K., & Pyrz, R. (2002). Synthesis of unsaturated polyesters for improved interfacial strength in carbon fibre composites. Composites Part A: Applied Science and Manufacturing, 33(9), 1239–1252. https://doi.org/10.1016/S1359-835X(02)00077-5
  • Gao, E., Lu, W., & Xu, Z. (2018). Strength loss of carbon nanotube fibers explained in a three-level hierarchical model. Carbon, 138, 134–142. https://doi.org/10.1016/j.carbon.2018.05.052
  • Gupta, N., Alred, J. M., Penev, E. S., & Yakobson, B. I. (2021). Universal strength scaling in carbon nanotube bundles with frictional load transfer. ACS Nano, 15(1), 1342–1350. https://doi.org/10.1021/acsnano.0c08588
  • Hehr, A., Schulz, M., Shanov, V., & Song, A. (2014). Passive damping of carbon nanotube thread. Journal of Intelligent Material Systems and Structures, 25(6), 713–719. https://doi.org/10.1177/1045389X13500578
  • Hehr, A., Schulz, M., Shanov, V., & Song, Y. (2014). Micro-crack detection and assessment with embedded carbon nanotube thread in composite materials. Structural Health Monitoring, 13(5), 512–524. https://doi.org/10.1177/1475921714532987
  • Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354(6348), 56–58. https://doi.org/10.1038/354056a0
  • Jayasinghe, C., Chakrabarti, S., Schulz, M. J., & Shanov, V. (2011). Spinning yarn from long carbon nanotube arrays. Journal of Materials Research, 26(5), 645–651. https://doi.org/10.1557/jmr.2010.91
  • Jung, Y., Cho, Y. S., Lee, J. W., Oh, J. Y., & Park, C. R. (2018). How can we make carbon nanotube yarn stronger? Composites Science and Technology, 166, 95–108. https://doi.org/10.1016/j.compscitech.2018.02.010
  • Jung, Y., Kim, T., & Park, C. R. (2015). Effect of polymer infiltration on structure and properties of carbon nanotube yarns. Carbon, 88, 60–69. https://doi.org/10.1016/j.carbon.2015.02.065
  • Kim, S. H., Haines, C. S., Li, N., Kim, K. J., Mun, T. J., Choi, C., Di, J., Oh, Y. J., Oviedo, J. P., Bykova, J., Fang, S., Jiang, N., Liu, Z., Wang, R., Kumar, P., Qiao, R., Priya, S., Cho, K., Kim, M., … Baughman, R. H. (2017). Harvesting electrical energy from carbon nanotube yarn twist. Science (New York, N.Y.), 357(6353), 773–778. https://doi.org/10.1126/science.aam8771
  • Kumar, R., & Cronin, S. B. (2007). Raman scattering of carbon nanotube bundles under axial strain and strain-induced debundling. Physical Review B, 75(15), 1–4. https://doi.org/10.1103/PhysRevB.75.155421
  • Laurent, C., Flahaut, E., & Peigney, A. (2010). The weight and density of carbon nanotubes versus the number of walls and diameter. Carbon, 48(10), 2994–2996. https://doi.org/10.1016/j.carbon.2010.04.010
  • Lekawa-Raus, A., Koziol, K. K. K., & Windle, A. H. (2014). Piezoresistive effect in carbon nanotube fibers. ACS Nano 8(11), 11214–11224. https://doi.org/10.1021/nn503596f
  • Li, Y., & Kröger, M. (2012). A theoretical evaluation of the effects of carbon nanotube entanglement and bundling on the structural and mechanical properties of buckypaper. Carbon, 50(5), 1793–1806. https://doi.org/10.1016/j.carbon.2011.12.027
  • Li, Y., & Kröger, M. (2012). Viscoelasticity of carbon nanotube buckypaper: Zipping-unzipping mechanism and entanglement effects. Soft Matter, 8(30), 7822–7830. https://doi.org/10.1039/c2sm25561h
  • Li, Y., Sun, B., Sockalingam, S., Pan, Z., Lu, W., & Chou, T.-W. (2020). Influence of transverse compression on axial electromechanical properties of carbon nanotube fibers. Materials & Design, 188, 108463. https://doi.org/10.1016/j.matdes.2019.108463
  • Liew, K. M., Wong, C. H., & Tan, M. J. (2005). Buckling properties of carbon nanotube bundles. Applied Physics Letters, 87(4), 41901. https://doi.org/10.1063/1.2001135
  • Liu, Q., Li, M., Gu, Y., Wang, S., Zhang, Y., Li, Q., Gao, L., & Zhang, Z. (2015). Interlocked CNT networks with high damping and storage modulus. Carbon, 86, 46–53. https://doi.org/10.1016/j.carbon.2015.01.014
  • Lizák, P. (2002). Yarn strength dependence on test length. Fibres & Textiles in Eastern Europe, 10, 32–34.
  • Miao, M. (2013). Yarn spun from carbon nanotube forests: Production, structure, properties and applications. Particuology, 11(4), 378–393. https://doi.org/10.1016/j.partic.2012.06.017
  • Miao, M. (2016). The role of twist in dry spun carbon nanotube yarns. Carbon, 96, 819–826. https://doi.org/10.1016/j.carbon.2015.10.022
  • Miao, M., Abot, J. L., Anike, J. C., Chen, S., Duong, H. M., & Hou, G. (2020). Carbon nanotube fibers and yarns: Production, properties and applications in smart textiles. Woodhead Publishing Ltd. https://doi.org/10.1016/C2017-0-04183-6
  • Miao, M., McDonnell, J., Vuckovic, L., & Hawkins, S. C. (2010). Poisson’s ratio and porosity of carbon nanotube dry-spun yarns. Carbon, 48(10), 2802–2811. https://doi.org/10.1016/j.carbon.2010.04.009
  • Mikhalchan, A., & Vilatela, J. J. (2019). A perspective on high-performance CNT fibres for structural composites. Carbon, 150, 191–215. https://doi.org/10.1016/j.carbon.2019.04.113
  • Mirzaeifar, R., Qin, Z., & Buehler, M. J. (2015). Mesoscale mechanics of twisting carbon nanotube yarns. Nanoscale, 7(12), 5435–5445. https://doi.org/10.1039/c4nr06669c
  • Misak, H. E., Asmatulu, R., O’Malley, M., Jurak, E., & Mall, S. (2014). Functionalization of carbon nanotube yarn by acid treatment. International Journal of Smart and Nano Materials, 5(1), 34–43. https://doi.org/10.1080/19475411.2014.896426
  • Mohiuddin, T. M. G., Lombardo, A., Nair, R. R., Bonetti, A., Savini, G., Jalil, R., Bonini, N., Basko, D. M., Galiotis, C., Marzari, N., Novoselov, K. S., Geim, A. K., & Ferrari, A. C. (2009). Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation. Physical Review B, 79(20), 205433. https://doi.org/10.1103/PhysRevB.79.205433
  • Obitayo, W., & Liu, T. (2012). A review: Carbon nanotube-based piezoresistive strain sensors. Journal of Sensors, 2012, 1–15. https://doi.org/10.1155/2012/652438
  • Ryu, S., Lee, P., Chou, J. B., Xu, R., Zhao, R., Hart, A. J., & Kim, S.-G. (2015). Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion. ACS Nano, 9(6), 5929–5936. https://doi.org/10.1021/acsnano.5b00599
  • Saito, R., Hofmann, M., Dresselhaus, G., Jorio, A., & Dresselhaus, M. S. (2011). Raman spectroscopy of graphene and carbon nanotubes. Advances in Physics, 60(3), 413–550. https://doi.org/10.1080/00018732.2011.582251
  • Santangelo, S., Lanza, M., & Milone, C. (2013). Evaluation of the overall crystalline quality of amorphous carbon containing multiwalled nanotubes. The Journal of Physical Chemistry C, 117(9), 4815–4823. https://doi.org/10.1021/jp310014w
  • Sasikumar, K., Jayesh, P., Manoj, N. R., Mukundan, T., & Khastgir, D. (2018). Effect of pristine multiwalled carbon nanotubes on tensile hysteresis in carboxylated nitrile rubber composites. Polymer Composites, 39(S2), E1269–E1279. https://doi.org/10.1002/pc.24851
  • Schönfelder, R., Avilés, F., Bachmatiuk, A., Cauich-Rodriguez, J. V., Knupfer, M., Büchner, B., & Rümmeli, M. H. (2012). On the merits of Raman spectroscopy and thermogravimetric analysis to asses carbon nanotube structural modifications. Applied Physics A, 106(4), 843–852. https://doi.org/10.1007/s00339-012-6787-8
  • Shahidi, S., & Moazzenchi, B. (2018). Carbon nanotube and its applications in textile industry—A review. Journal of the Textile Institute, 109(12), 1653–1666. https://doi.org/10.1080/00405000.2018.1437114
  • Xu, M., Futaba, D. N., Yamada, T., Yumura, M., & Hata, K. (2010). Carbon nanotubes with temperature-invariant viscoelasticity from -196° to 1000 °C. Science (New York, N.Y.), 330(6009), 1364–1368. https://doi.org/10.1126/science.1194865
  • Yang, X., He, P., & Gao, H. (2011). Modeling frequency- and temperature-invariant dissipative behaviors of randomly entangled carbon nanotube networks under cyclic loading. Nano Research, 4(12), 1191–1198. https://doi.org/10.1007/s12274-011-0169-y
  • Yoshihara, N., & Ishihara, H. (2002). Structure and properties of segmented poly(urethane-urea) elastic fibers Part 2: Hysteresis of Stress-Strain Curves. Journal of Textile Engineering, 48, 64–69. https://doi.org/10.4188/jte.48.64
  • Zhang, M., Fang, S., Zakhidov, A. A., Lee, S. B., Aliev, A. E., Williams, C. D., Atkinson, K. R., & Baughman, R. H. (2005). Strong, transparent, multifunctional, carbon nanotube sheets. Science (New York, N.Y.), 309(5738), 1215–1219. https://doi.org/10.1126/science.1115311
  • Zhang, X., Lu, W., Zhou, G., & Li, Q. (2020). Understanding the mechanical and conductive properties of carbon nanotube fibers for smart electronics. Advanced Materials, 32(5), 1902028. https://doi.org/10.1002/adma.201902028
  • Zhang, Y., Zheng, L., Sun, G., Zhan, Z., & Liao, K. (2012). Failure mechanisms of carbon nanotube fibers under different strain rates. Carbon, 50(8), 2887–2893. https://doi.org/10.1016/j.carbon.2012.02.057
  • Zhao, J., Wang, F., Zhang, X., Liang, L., Yang, X., Li, Q., & Zhang, X. (2018). Vibration damping of carbon nanotube assembly materials. Advanced Engineering Materials, 20(3), 1700647. https://doi.org/10.1002/adem.201700647
  • Zhao, J., Zhang, X., Pan, Z., & Li, Q. (2015). Wide-range tunable dynamic property of carbon-nanotube-based fibers. Advanced Materials Interfaces, 2(10), 1500093. https://doi.org/10.1002/admi.201500093

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.