96
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigation of physiochemical and mechanical properties of reduced graphene oxide (rGO) modified carbon fiber polymer composites

ORCID Icon, ORCID Icon, &
Pages 188-200 | Received 03 Mar 2022, Accepted 28 Nov 2022, Published online: 25 Apr 2023

References

  • Adak, N. C., Chhetri, S., Kim, N. H., Murmu, N. C., Samanta, P., & Kuila, T. (2018). Static and dynamic mechanical properties of graphene oxide-incorporated woven carbon fiber/epoxy composite. Journal of Materials Engineering and Performance, 27(3), 1138–1147. https://doi.org/10.1007/s11665-018-3201-5
  • Adak, N. C., Chhetri, S., Kuila, T., Murmu, N. C., Samanta, P., & Lee, J. H. (2018). Effects of hydrazine reduced graphene oxide on the inter-laminar fracture toughness of woven carbon fiber/epoxy composite. Composites Part B: Engineering, 149, 22–30. https://doi.org/10.1016/j.compositesb.2018.05.009
  • Adak, N. C., Chhetri, S., Murmu, N. C., Samanta, P., & Kuila, T. (2018). Effect of thermally reduced graphene oxide on mechanical properties of woven carbon fiber/epoxy composite. Crystals, 8(3), 111. https://doi.org/10.3390/cryst8030111
  • Akhavan, O. (2010). The effect of heat treatment on formation of graphene thin films from graphene oxide nanosheets. Carbon, 48(2), 509–519. https://doi.org/10.1016/j.carbon.2009.09.069
  • Ali, A., Nasir, M. A., Khalid, M. Y., Nauman, S., Shaker, K., Khushnood, S., Altaf, K., Zeeshan, M., & Hussain, A. (2019). Experimental and numerical characterization of mechanical properties of carbon/jute fabric reinforced epoxy hybrid composites. Journal of Mechanical Science and Technology, 33(9), 4217–4226. https://doi.org/10.1007/s12206-019-0817-9
  • Aradhana, R., Mohanty, S., & Nayak, S. K. (2018). Comparison of mechanical, electrical and thermal properties in graphene oxide and reduced graphene oxide filled epoxy nanocomposite adhesives. Polymer, 141, 109–123. https://doi.org/10.1016/j.polymer.2018.03.005
  • Bari, P., Khan, S., Njuguna, J., & Mishra, S. (2017). Elaboration of properties of graphene oxide reinforced epoxy nanocomposites. International Journal of Plastics Technology, 21(1), 194–208. https://doi.org/10.1007/s12588-017-9180-9
  • Chen, Y., Ma, Y., Huang, J., Zhang, Z., Zhao, D., Zhang, X., & Zhang, B. (2019). Improvement of heat resistance and mechanical properties of epoxy resin with nano-Cu-Ni supported RGO. Polymer-Plastics Technology and Materials, 58(6), 667–677. https://doi.org/10.1080/03602559.2018.1520248
  • Choudhury, P., Halder, S., Khan, N. I., Wang, J., & Pandey, K. M. (2017). Enhanced crack suppression ability of hybrid glass fiber reinforced laminated composites fabricated using GNP/epoxy system by optimized UDM parameters. Ultrasonics Sonochemistry, 39, 174–187. https://doi.org/10.1016/J.ULTSONCH.2017.04.014
  • Chouhan, D. K., Kumar, A., Rath, S. K., Kumar, S., Alegaonkar, P. S., Harikrishnan, G., & Umasankar Patro, T. (2018). Laponite-graphene oxide hybrid particulate filler enhances mechanical properties of cross-linked epoxy. Journal of Polymer Research, 25(2), 1–12. https://doi.org/10.1007/s10965-018-1461-2
  • Davis, D. C., & Whelan, B. D. (2011). An experimental study of interlaminar shear fracture toughness of a nanotube reinforced composite. Composites Part B: Engineering, 42(1), 105–116. https://doi.org/10.1016/j.compositesb.2010.06.001
  • Friedrich, K., & Almajid, A. A. (2013). Manufacturing aspects of advanced polymer composites for automotive applications. Applied Composite Materials, 20(2), 107–128. https://doi.org/10.1007/s10443-012-9258-7
  • Hughes, J. D. H. (1991). The carbon fibre/epoxy interface—A review. Composites Science and Technology, 41(1), 13–45. https://doi.org/10.1016/0266-3538(91)90050-Y
  • Jenkins, P., Siddique, S., Khan, S., Usman, A., Starost, K., MacPherson, A., Bari, P., Mishra, S., & Njuguna, J. (2019). Influence of reduced graphene oxide on epoxy/carbon fiber-reinforced hybrid composite: Flexural and shear properties under varying temperature conditions. Advanced Engineering Materials, 21(6), 1800614. https://doi.org/10.1002/adem.201800614
  • Kesarwani, S., & Verma, R. K. (2021). A critical review on synthesis, characterization and multifunctional applications of reduced graphene oxide (rGO)/composites. Nano, 16(09), 2130008. https://doi.org/10.1142/S1793292021300085
  • Keyte, J., Pancholi, K., & Njuguna, J. (2019). Recent developments in graphene oxide/epoxy carbon fiber-reinforced composites. Frontiers in Materials, 6(October), 1–30. https://doi.org/10.3389/fmats.2019.00224
  • Kumar, R., Mohanty, S., & Nayak, S. K. (2019). Study on epoxy resin-based thermal adhesive filled with hybrid expanded graphite and graphene nanoplatelet. SN Applied Sciences, 1(2), 180. https://doi.org/10.1007/s42452-019-0200-6
  • Kwon, D. J., Park, S. M., Kwon, I. J., Park, J. M., & Jeong, E. (2019). Improvement of interlaminar properties of carbon fiber-reinforced epoxy composites using aluminum trihydroxide. Carbon Letters, 29(2), 183–191. https://doi.org/10.1007/s42823-019-00019-x
  • Lee, C. Y., Bae, J. H., Kim, T. Y., Chang, S. H., & Kim, S. Y. (2015). Using silane-functionalized graphene oxides for enhancing the interfacial bonding strength of carbon/epoxy composites. Composites Part A: Applied Science and Manufacturing, 75, 11–17. https://doi.org/10.1016/j.compositesa.2015.04.013
  • Olowojoba, G. B., Eslava, S., Gutierrez, E. S., Kinloch, A. J., Mattevi, C., Rocha, V. G., & Taylor, A. C. (2016). In situ thermally reduced graphene oxide/epoxy composites: Thermal and mechanical properties. Applied Nanoscience, 6(7), 1015–1022. https://doi.org/10.1007/s13204-016-0518-y
  • Ou, Y., González, C., & Vilatela, J. J. (2019). Interlaminar toughening in structural carbon fiber/epoxy composites interleaved with carbon nanotube veils. Composites Part A: Applied Science and Manufacturing, 124, 105477. https://doi.org/10.1016/j.compositesa.2019.105477
  • Park, B. Y., Kim, S. C., & Jung, B. (1997). Interlaminar fracture toughness of carbon fiber/epoxy composites using short Kevlar fiber and/or nylon-6 powder reinforcement. Polymers for Advanced Technologies, 8(6), 371–377. https://doi.org/10.1002/(SICI)1099-1581(199706)8:6<371::AID-PAT658>3.0.CO;2-I
  • Park, Y. T., Qian, Y., Chan, C., Suh, T., Nejhad, M. G., Macosko, C. W., & Stein, A. (2015). Epoxy toughening with low graphene loading. Advanced Functional Materials, 25(4), 575–585. https://doi.org/10.1002/adfm.201402553
  • Pathak, A. K., Borah, M., Gupta, A., Yokozeki, T., & Dhakate, S. R. (2016). Improved mechanical properties of carbon fiber/graphene oxide-epoxy hybrid composites. Composites Science and Technology, 135, 28–38. https://doi.org/10.1016/j.compscitech.2016.09.007
  • Pathak, A. K., Garg, H., Singh, M., Yokozeki, T., & Dhakate, S. R. (2019). Enhanced interfacial properties of graphene oxide incorporated carbon fiber reinforced epoxy nanocomposite: A systematic thermal properties investigation. Journal of Polymer Research, 26(2), 23. https://doi.org/10.1007/s10965-018-1668-2
  • Salahuddin, B., Faisal, S. N., Baigh, T. A., Alghamdi, M. N., Islam, M. S., Song, B., Zhang, X., Gao, S., & Aziz, S. (2021). Carbonaceous materials coated carbon fibre reinforced polymer matrix composites. Polymers, 13(16), 2771. https://doi.org/10.3390/polym13162771
  • Saleem, H., Haneef, M., & Abbasi, H. Y. (2018). Synthesis route of reduced graphene oxide via thermal reduction of chemically exfoliated graphene oxide. Materials Chemistry and Physics, 204, 1–7. https://doi.org/10.1016/j.matchemphys.2017.10.020
  • Shahbakhsh, S., Tohidlou, E., & Khosravi, H. (2020). Influence of modified carbonate calcium nanoparticles on the mechanical properties of carbon fiber/epoxy composites. The Journal of The Textile Institute, 111(4), 550–554. https://doi.org/10.1080/00405000.2019.1651155
  • Tang, L. C., Wan, Y. J., Yan, D., Pei, Y. B., Zhao, L., Li, Y. B., Wu, L. B., Jiang, J. X., & Lai, G. Q. (2013). The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon, 60, 16–27. https://doi.org/10.1016/j.carbon.2013.03.050
  • Topkaya, T., Çelik, Y. H., & Kilickap, E. (2020). Mechanical properties of fiber/graphene epoxy hybrid composites. Journal of Mechanical Science and Technology, 34(11), 4589–4595. https://doi.org/10.1007/s12206-020-1016-4
  • Upadhyay, R. K., & Kumar, A. (2019). Effect of particle weight concentration on the lubrication properties of graphene based epoxy composites. Colloid and Interface Science Communications, 33, 100206. https://doi.org/10.1016/j.colcom.2019.100206
  • Wan, Y. J., Tang, L. C., Gong, L. X., Yan, D., Li, Y. B., Wu, L. B., Jiang, J. X., & Lai, G. Q. (2014). Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties. Carbon, 69, 467–480. https://doi.org/10.1016/j.carbon.2013.12.050
  • Wang, C., Li, J., Sun, S., Li, X., Zhao, F., Jiang, B., & Huang, Y. (2016). Electrophoretic deposition of graphene oxide on continuous carbon fibers for reinforcement of both tensile and interfacial strength. Composites Science and Technology, 135, 46–53. https://doi.org/10.1016/j.compscitech.2016.07.009
  • Zaman, I., Phan, T. T., Kuan, H. C., Meng, Q., Bao La, L. T., Luong, L., Youssf, O., & Ma, J. (2011). Epoxy/graphene platelets nanocomposites with two levels of interface strength. Polymer, 52(7), 1603–1611. https://doi.org/10.1016/j.polymer.2011.02.003
  • Zhang, R., Tian, J., Wu, Y., Chou, W., Yang, J., & Xue, P. (2021). An investigation on shape memory behaviors of UHMWPE-based nanocomposites reinforced by graphene nanoplatelets. Polymer Testing, 99, 107217. https://doi.org/10.1016/j.polymertesting.2021.107217
  • Zhang, Y., Deng, D., Lu, K., Zhang, J., Xia, B., Zhao, Y., Fang, J., & Wei, Z. (2015). Synergistic effect of polymer and small molecules for high-performance ternary organic solar cells. Advanced Materials (Deerfield Beach, Fla.), 27(6), 1071–1076. https://doi.org/10.1002/adma.201404902

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.