79
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Fabrication of asymmetric wettability silk fabrics with plasma-induced grafting polymerization of octamethylcyclotetrasiloxane

, , , , , , & show all
Pages 904-912 | Received 23 Nov 2022, Accepted 01 Apr 2023, Published online: 18 Apr 2023

References

  • Aileni, R. M., Albici, S., Dinca, L., & Surdu, L. (2019). Bivariate analysis of the hydrophobic textiles obtained by plasma treatment. Industria Textila, 70(06), 527–532. https://doi.org/10.35530/IT.070.06.1476
  • Aileni, R. M., Chiriac, L., Subtirica, A., Albici, S., & Cristian Dinca, L. (2019). Aspects of the hydrophobic effect sustainability obtained in plasma for cotton fabrics. Industria Textila, 70(03), 223–228. https://doi.org/10.35530/IT.070.03.1475
  • Caschera, D., Cortese, B., Mezzi, A., Brucale, M., Ingo, G. M., Gigli, G., & Padeletti, G. (2013). Ultra hydrophobic/superhydrophilic modified cotton textiles through functionalized diamond-like carbon coatings for self-cleaning applications. Langmuir: The ACS Journal of Surfaces and Colloids, 29(8), 2775–2783. https://doi.org/10.1021/la305032k
  • Chen, F. X., Liu, X., Yang, H. Y., Dong, B. H., Zhou, Y. S., Chen, D. Z., Hu, H., Xiao, X. F., Fan, D. F., Zhang, C. H., Cheng, F., Cao, Y. H., Yuan, T., Liang, Z. H., Li, J., Wang, S. M., & Xu, W. L. (2016). A simple one-step approach to fabrication of highly hydrophobic silk fabrics. Applied Surface Science, 360, 207–212. https://doi.org/10.1016/j.apsusc.2015.10.186
  • Chen, G. L., Zhou, M. Y., Zhang, Z. X., Lv, G. H., Massey, S., Smith, W., & Tatoulian, M. (2011). Acrylic acid polymer coatings on silk fibers by room-temperature APGD plasma jets. Plasma Processes and Polymers, 8(8), 701–708. https://doi.org/10.1002/ppap.201100008
  • Chirila, L., Cinteza, L. O., Tanase, M., Radulescu, D. E., Radulescu, D. M., & Stanculescu, I. R. (2020). Hybrid materials based on ZnO and SiO2 nanoparticles as hydrophobic coatings for textiles. Industria Textila, 71(04), 297–301. https://doi.org/10.35530/IT.071.04.1814
  • Gayathri, A., Varalakshmi, P., & Sethuraman, M. G. (2022). Development of trilayered multifunctional superhydrophobic cotton fabric using biogenic materials. Research Journal of Textile and Apparel. https://doi.org/10.1108/RJTA-05-2022-0055
  • Gogoi, D., Choudhury, A. J., Chutia, J., Pal, A. R., Dass, N. N., Devi, D., & Patil, D. S. (2011). Enhancement of hydrophobicity and tensile strength of muga silk fiber by radiofrequency Ar plasma discharge. Applied Surface Science, 258(1), 126–135. https://doi.org/10.1016/j.apsusc.2011.08.018
  • Hasanzadeh, M., Shahriyari Far, H., Haji, A., & Rosace, G. (2022). Surface modification of polyester/viscose fabric with silica hydrosol and amino-functionalized polydimethylsiloxane for the preparation of a fluorine-free superhydrophobic and breathable textile. Coatings, 12(3), 398. https://doi.org/10.3390/coatings12030398
  • Hodak, S. K., Supasai, T., Paosawatyanyong, B., Kamlangkla, K., & Pavarajarn, V. (2008). Enhancement of the hydrophobicity of silk fabrics by SF6 plasma. Applied Surface Science, 254(15), 4744–4749. https://doi.org/10.1016/j.apsusc.2008.01.110
  • Jin, Y. H., Liu, W., Sato, I., Nakayama, S. F., Sasaki, K., Saito, N., & Tsuda, S. (2009). PFOS and PFOA in environmental and tap water in China. Chemosphere, 77(5), 605–611. https://doi.org/10.1016/j.chemosphere.2009.08.058
  • Kong, Y., Liu, Y. Y., & Xin, J. H. (2011). Fabrics with self-adaptive wettability controlled by “light-and-dark”. Journal of Materials Chemistry, 21(44), 17978–17987. https://doi.org/10.1039/c1jm12516h
  • Lee, W., Jin, M. K., Yoo, W. C., & Lee, J. K. (2004). Nanostructuring of a polymeric substrate with well-defined nanometer-scale topography and tailored surface wettability. Langmuir: The ACS Journal of Surfaces and Colloids, 20(18), 7665–7669. https://doi.org/10.1021/la049411+
  • Liu, H., Huang, J. Y., Li, F. Y., Chen, Z., Zhang, K. Q., Al-Deyab, S. S., & Lai, Y. K. (2017). Multifunctional superamphiphobic fabrics with asymmetric wettability for one-way fluid transport and templated patterning. Cellulose, 24(2), 1129–1141. https://doi.org/10.1007/s10570-016-1177-6
  • Liu, J. S., Liu, K., Lian, X., & Xiang, H. (2016). Synthesis of polysiloxanes in microemulsion via ring opening of D4. Nanochemistry Research. https://doi.org/10.7508/ncr.2016.02.010
  • Liu, Y. Y., Xin, J. H., & Choi, C. H. (2012). Cotton fabrics with single-faced superhydrophobicity. Langmuir: The ACS Journal of Surfaces and Colloids, 28(50), 17426–17434. https://doi.org/10.1021/la303714h
  • Liu, W. C., Yang, C. C., Chen, W. C., Dai, B. T., & Tsai, M. S. (2002). The structural transformation and properties of spin-on poly(silsesquioxane) films by thermal curing. Journal of Non-Crystalline Solids, 311(3), 233–240. https://doi.org/10.1016/S0022-3093(02)01373-X
  • Li, S. W., Xing, T. L., Li, Z. X., & Chen, G. Q. (2013). Structure and properties of silk grafted with acrylate fluoride monomers by ATRP. Applied Surface Science, 268, 92–97. https://doi.org/10.1016/j.apsusc.2012.11.173
  • Li, Y. Q., Zhang, Y., Zou, C., & Shao, J. Z. (2015). Study of plasma-induced graft polymerization of stearyl methacrylate on cotton fabric substrates. Applied Surface Science, 357(2015), 2327–2332. https://doi.org/10.1016/j.apsusc.2015.09.236
  • Li, Y. Q., Zou, C., Shao, J. Z., & Li, Y. N. (2019). Fabrication of superhydrophobic cotton fabrics through wrapping silica with plasma-induced grafting polymerization. Textile Research Journal, 89(3), 401–410. https://doi.org/10.1177/0040517517748492
  • Ma, M., Mao, Y., Gupta, M., Gleason, K. K., & Rutledge, G. C. (2005). superhydrophobic fabrics produced by electrospinning and chemical vapor deposition. Macromolecules, 38(23), 9742–9748. https://doi.org/10.1021/ma0511189
  • Novotna, K., Havelka, P., Sopuch, T., Kolarova, K., Vosmanska, V., Lisa, V., Svorcik, V., & Bacakova, L. (2013). Cellulose-based materials as scaffolds for tissue engineering. Cellulose, 20(5), 2263–2278. https://doi.org/10.1007/s10570-013-0006-4
  • Oh, J. H., Ko, T. J., Moon, M. W., & Park, C. H. (2014). Nanostructured superhydrophobic silk fabric fabricated using the ion beam method. RSC Advances, 4(73), 38966–38973. https://doi.org/10.1039/C4RA05938G
  • Pavoni, E., Tozzi, S., Tsukada, M., & Taddei, P. (2016). Structural study on methacrylamide-grafted Tussah silk fibroin fibres. International Journal of Biological Macromolecules, 88(2016), 196–205. https://doi.org/10.1016/j.ijbiomac.2016.03.057
  • Rabia, S., Muhammad, M., Naveed, R., Waqas, A. S., & Qutab, H. G. (2020). Development of free fluorine and formaldehyde oil and water repellent finishes for cotton fabrics through polymerization of bio-based stearic acid with carboxylic acids. Industria Textila, 71(02), 145–155. https://doi.org/10.35530/IT.071.02.1731
  • Schellenberger, F., Encinas, N., Vollmer, D., & Butt, H. J. (2016). How water advances on superhydrophobic surfaces. Physical Review Letters, 116(9), 096101. https://doi.org/10.1103/PhysRevLett.116.096101
  • Shin, B., Lee, K. R., Moon, M. W., & Kim, H. Y. (2012). Extreme water repellency of nanostructured low-surface-energy non-woven fabrics. Soft Matter. 8(6), 1817–1823. https://doi.org/10.1039/C1SM06867A
  • Tang, B., Sun, L., Kaur, J., Yu, Y., & Wang, X. G. (2014). In-situ synthesis of gold nanoparticles for multifunctionalization of silk fabrics. Dyes and Pigments, 103, 183–190. https://doi.org/10.1016/j.dyepig.2013.12.008
  • Thol, M., Rutkai, G., Köster, A., Dubberke, F. H., Windmann, T., Span, R., & Vrabec, J. (2016). Thermodynamic properties of octamethylcyclotetrasiloxane. Journal of Chemical & Engineering Data, 61(7), 2580–2595. https://doi.org/10.1021/acs.jced.6b00261
  • Vijaya Kumar, S. G., Prabhakar, P., Sen, R. K., Uppal, N., Khan, M. A., & Srivastava, A. K. (2021). Development of superhydrophobic cotton fabric using zinc oxide nanoflower/polydimethylsiloxane (PDMS) nanocomposite coatings. Textile & Leather Review, 4, 253–266. https://doi.org/10.31881/TLR.2021.18
  • Walton, B. L., Hoffmann, W. D., & Verbeck, G. F. (2014). Sub-eV ion deposition utilizing soft-landing ion mobility for controlled ion, ion cluster, and charged nanoparticle deposition. International Journal of Mass Spectrometry, 370(2014), 66–74. https://doi.org/10.1016/j.ijms.2014.06.031
  • Wang, X. F., Huang, Z., Miao, D. Y., Zhao, J., Yu, J. Y., & Ding, B. (2019). Biomimetic fibrous murray membranes with ultrafast water transport and evaporation for smart moisture-wicking fabrics. ACS Nano. 13(2), 1060–1070. https://doi.org/10.1021/acsnano.8b08242
  • Xu, Y. H., Chen, D. D., Du, Z. F., Li, J. F., Wang, Y. X., Yang, Z., & Peng, F. X. (2017). Structure and properties of silk fibroin grafted carboxylic cotton fabric via amide covalent modification. Carbohydrate Polymers, 161, 99–108. https://doi.org/10.1016/j.carbpol.2016.12.071
  • Yang, H. C., Hou, J. W., Wan, L. S., Chen, V., & Xu, Z. K. (2016). Janus membranes with asymmetric wettability for fine bubble aeration. Advanced Materials Interfaces, 3(9), 1500774. https://doi.org/10.1002/admi.201500774
  • Zhang, Q. H., Gu, J. L., Chen, G. Q., & Xing, T. L. (2016). Durable flame retardant finish for silk fabric using boron hybrid silica sol. Applied Surface Science, 387(2016), 446–453. https://doi.org/10.1016/j.apsusc.2016.06.119
  • Zhang, Y., Li, Y. Q., Shao, J. Z., & Zou, C. (2015). Fabrication of superhydrophobic fluorine-free films on cotton fabrics through plasma-induced grafting polymerization of 1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclotetrasiloxane. Surface & Coatings Technology, 276(2015), 16–22. https://doi.org/10.1016/j.surfcoat.2015.06.050
  • Zhang, X., Shi, F., Niu, J., Jiang, Y. G., & Wang, Z. Q. (2008). Superhydrophobic surfaces: From structural control to functional application. Journal of Materials Chemistry, 18(6), 621–633. https://doi.org/10.1039/B711226B

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.