516
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Flame-retardant, ultralight, and superelastic electrospun fiber sponges for effective sound absorption

, , , , ORCID Icon, , & show all
Pages 724-732 | Received 07 Jan 2023, Accepted 23 Feb 2023, Published online: 25 Apr 2023

References

  • Atiénzar-Navarro, R., Bonet-Aracil, M., Gisbert-Payá, J., del Rey, R., & Picó, R. (2020). Sound absorption of textile fabrics doped with microcapsules. Applied Acoustics, 164, 107285. https://doi.org/10.1016/j.apacoust.2020.107285
  • Basner, M., Babisch, W., Davis, A., Brink, M., Clark, C., Janssen, S., & Stansfeld, S. (2014). Auditory and non-auditory effects of noise on health. Lancet (London, England), 383(9925), 1325–1332. https://doi.org/10.1016/s0140-6736(13)61613-x
  • Bujoreanu, C., Nedeff, F., Benchea, M., & Agop, M. (2017). Experimental and theoretical considerations on sound absorption performance of waste materials including the effect of backing plates. Applied Acoustics, 119, 88–93. https://doi.org/10.1016/j.apacoust.2016.12.010
  • Buxton, R. T., McKenna, M. F., Mennitt, D., Fristrup, K., Crooks, K., Angeloni, L., & Wittemyer, G. (2017). Noise pollution is pervasive in US protected areas. Science (New York, N.Y.), 356(6337), 531–533. https://doi.org/10.1126/science.aah4783
  • Cao, L., Si, Y., Wu, Y., Wang, X., Yu, J., & Ding, B. (2019). Ultralight, Superelastic and bendable lashing-structured nanofibrous aerogels for effective sound absorption. Nanoscale, 11(5), 2289–2298. https://doi.org/10.1039/c8nr09288e
  • Cao, L., Si, Y., Yin, X., Yu, J., & Ding, B. (2019). Ultralight and resilient electrospun fiber sponge with a lamellar corrugated microstructure for effective low-frequency sound absorption. ACS Applied Materials & Interfaces, 11(38), 35333–35342. https://doi.org/10.1021/acsami.9b12444
  • Cao, L., Yu, X., Yin, X., Si, Y., Yu, J., & Ding, B. (2021). Hierarchically maze-like structured nanofiber aerogels for effective low-frequency sound absorption. Journal of Colloid and Interface Science, 597, 21–28. https://doi.org/10.1016/j.jcis.2021.03.172
  • Chang, G., Zhu, X., Li, A., Kan, W., Warren, R., Zhao, R., Wang, X., Xue, G., Shen, J., & Lin, L. (2016). Formation and self-assembly of 3D nanofibrous networks based on oppositely charged jets. Materials & Design, 97, 126–130. https://doi.org/10.1016/j.matdes.2016.02.069
  • Chatterjee, S., Shanmuganathan, K., & Kumaraswamy, G. (2017). Fire-retardant, self-extinguishing inorganic/polymer composite memory foams. ACS Applied Materials & Interfaces, 9(51), 44864–44872. https://doi.org/10.1021/acsami.7b16808
  • Choe, H., Sung, G., & Kim, J. H. (2018). Chemical treatment of wood fibers to enhance the sound absorption coefficient of flexible polyurethane composite foams. Composites Science and Technology, 156, 19–27. https://doi.org/10.1016/j.compscitech.2017.12.024
  • D'alessandro, F., Baldinelli, G., Bianchi, F., Sambuco, S., & Rufini, A. (2018). Experimental assessment of the water content influence on thermo-acoustic performance of building insulation materials. Construction and Building Materials, 158, 264–274. https://doi.org/10.1016/j.conbuildmat.2017.10.028
  • Dunne, R., Desai, D., & Sadiku, R. (2017). A review of the factors that influence sound absorption and the available empirical models for fibrous materials. Acoustics Australia, 45(2), 453–469. https://doi.org/10.1007/s40857-017-0097-4
  • Estévez, M., Montalbano, G., Gallo-Cordova, A., Ovejero, J., Izquierdo-Barba, I., González, B., Tomasina, C., Moroni, L., Vallet-Regí, M., Vitale-Brovarone, C., & Fiorilli, S. (2022). Incorporation of superparamagnetic iron oxide nanoparticles into collagen formulation for 3D electrospun scaffolds. Nanomaterials, 12(2), 181. https://doi.org/10.3390/nano12020181
  • Feng, Y., Zong, D., Hou, Y., Yin, X., Zhang, S., Duan, L., Si, Y., Jia, Y., & Ding, B. (2021). Gradient structured micro/nanofibrous sponges with superior compressibility and stretchability for broadband sound absorption. Journal of Colloid and Interface Science, 593, 59–66. https://doi.org/10.1016/j.jcis.2021.03.013
  • Griffiths, S., Nennig, B., & Job, S. (2017). Porogranular materials composed of elastic Helmholtz resonators for acoustic wave absorption. The Journal of the Acoustical Society of America, 141(1), 254. https://doi.org/10.1121/1.4973691
  • Guan, Y., Zhao, D., & Low, T. (2021). Experimental evaluation on acoustic impedance and sound absorption performances of porous foams with additives with Helmholtz number. Aerospace Science and Technology, 119, 107120. https://doi.org/10.1016/j.ast.2021.107120
  • He, C., Huang, J., Li, S., Meng, K., Zhang, L., Chen, Z., & Lai, Y. (2018). Mechanical resistant and sustainable cellulose-based composite aerogels with excellent flame retardant, sound-absorption and super-antiwetting ability for advanced engineering materials. ACS Sustainable Chemistry & Engineering, 6(1), 927–936. https://doi.org/10.1021/acssuschemeng.7b03281
  • Huang, Z., Ruan, B., Wu, J., Ma, N., Jiang, T., & Tsai, F. (2021). High-efficiency ammonium polyphosphate intumescent encapsulated polypropylene flame retardant. Journal of Applied Polymer Science, 138(20), 50413. https://doi.org/10.1002/app.50413
  • Kolya, H., & Won Kang, C. (2020). High acoustic absorption properties of hack berry compared to nine different hardwood species: A novel finding for acoustical engineers. Applied Acoustics, 169, 107475. https://doi.org/10.1016/j.apacoust.2020.107475
  • Li, H., & Zhang, W. (2007). Current status and development of fire-proof finishing methods for fiber and textile. Materials Science and Engineering, 25(5), 798–801. https://doi.org/10.3969/j.issn.1673-2812.2007.05.037
  • Liu, D., Xia, K., Chen, W., Yang, R., & Wang, B. (2012). Preparation and design of green sound-absorbing materials via pulp fibrous models. Journal of Composite Materials, 46(4), 399–407. https://doi.org/10.1177/0021998311429881
  • Liu, L., Xu, W., Ding, Y., Agarwal, S., Greiner, A., & Duan, G. (2020). A review of smart electrospun fibers toward textiles. Composites Communications, 22, 100506. https://doi.org/10.1016/j.coco.2020.100506
  • Liu, H., & Zuo, B. (2018). Structure and sound absorption properties of spiral vane electrospun PVA/PEO nanofiber membranes. Applied Sciences, 8(2), 296. https://doi.org/10.3390/app8020296
  • Lu, Y., Sun, Q., Yang, D., She, X., Yao, X., Zhu, G., Liu, Y., Zhao, H., & Li, J. (2012). Fabrication of mesoporous lignocellulose aerogels from wood via cyclic liquid nitrogen freezing-thawing in ionic liquid solution. Journal of Materials Chemistry, 22(27), 13548–13557. https://doi.org/10.1039/c2jm31310c
  • Lv, Y., Xia, J., Yang, Y., Chen, Y., & Liu, T. (2021). Thin-film composite membranes with mineralized nanofiber supports for highly efficient nanofiltration. Composites Communications, 24, 100695. https://doi.org/10.1016/j.coco.2021.100695
  • Mohrova, J., & Kalinova, K. (2012). Different structures of PVA nanofibrous membrane for sound absorption application. Journal of Nanomaterials, 2012, 1–4. https://doi.org/10.1155/2012/643043
  • Na, Y., Agnhage, T., & Cho, G. (2012). Sound absorption of multiple layers of nanofiber webs and the comparison of measuring methods for sound absorption coefficients. Fibers and Polymers, 13(10), 1348–1352. https://doi.org/10.1007/s12221-012-1348-5
  • Na, Y., & Cho, G. (2010). Sound absorption and viscoelastic property of acoustical automotive nonwovens and their plasma treatment. Fibers and Polymers, 11(5), 782–789. https://doi.org/10.1007/s12221-010-0782-5
  • Ozturk, M. K., Nergis, F. B., & Candan, C. (2018). Design of electrospun polyacrylonitrile nanofiber-coated nonwoven structure for sound absorption. Polymers for Advanced Technologies, 29(4), 1255–1260. https://doi.org/10.1002/pat.4236
  • Park, S. (2013). Acoustic properties of micro-perforated panel absorbers backed by Helmholtz resonators for the improvement of low-frequency sound absorption. Journal of Sound and Vibration, 332(20), 4895–4911. https://doi.org/10.1016/j.jsv.2013.04.029
  • Park, S. M., & Kim, D. S. (2015). Electrolyte-assisted electrospinning for a self-assembled, free-standing nanofiber membrane on a curved surface. Advanced Materials (Deerfield Beach, Fla.), 27(10), 1682–1687. https://doi.org/10.1002/adma.201404741
  • Patnaik, A., Mvubu, M., Muniyasamy, S., Botha, A., & Anandjiwala, R. D. (2015). Thermal and sound insulation materials from waste wool and recycled polyester fibers and their biodegradation studies. Energy and Buildings, 92, 161–169. https://doi.org/10.1016/j.enbuild.2015.01.056
  • Phong, V., & Papamoschou, D. (2015). Normal incidence acoustic insertion loss of perforated plates with bias flow. The Journal of the Acoustical Society of America, 138(6), 3907–3921. https://doi.org/10.2514/6.2015-0742
  • Qiu, X., Li, Z., Li, X., & Zhang, Z. (2018). Flame retardant coatings prepared using layer by layer assembly: A review. Chemical Engineering Journal, 334, 108–122. https://doi.org/10.1016/j.cej.2017.09.194
  • Seddeq, H. S., Aly, N. M., Ali, M. A., & Elshakankery, M. H. (2013). Investigation on sound absorption properties for recycled fibrous materials. Journal of Industrial Textiles, 43(1), 56–73. https://doi.org/10.1177/1528083712446956
  • Si, Y., Fu, Q., Wang, X., Zhu, J., Yu, J., Sun, G., & Ding, B. (2015). Superelastic and superhydrophobic nanofiber-assembled cellular aerogels for effective separation of oil/water emulsions. ACS Nano, 9(4), 3791–3799. https://doi.org/10.1021/nn506633b
  • Si, Y., Wang, X., Dou, L., Yu, J., & Ding, B. (2018). Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity. Science Advances, 4(4), eaas8925. https://doi.org/10.1126/sciadv.aas8925
  • Si, Y., Wang, L., Wang, X., Tang, N., Yu, J., & Ding, B. (2017). Ultrahigh-water-content, superelastic, and shape-memory nanofiber-assembled hydrogels exhibiting pressure-responsive conductivity. Advanced Materials, 29(24), 1700339. https://doi.org/10.1002/adma.201700339
  • Sohrabi, S., & Khreis, H. (2020). Burden of disease from transportation noise and motor vehicle crashes: Analysis of data from Houston, Texas. Environment International, 136, 105520. https://doi.org/10.1016/j.envint.2020.105520
  • Sun, B., Long, Y. Z., Zhang, H. D., Li, M. M., Duvail, J. L., Jiang, X. Y., & Yin, H. L. (2014). Advances in three-dimensional nanofibrous macrostrutures via elecrospining. Progress in Polymer Science, 39(5), 862–890. https://doi.org/10.1016/j.progpolymsci.2013.06.002
  • Sung, G., Kim, S. K., Kim, J. W., & Kim, J. H. (2016). Effect of isocyanate molecular structures in fabricating flexible polyurethane foams on sound absorption behavior. Polymer Testing, 53, 156–164. https://doi.org/10.1016/j.polymertesting.2016.05.028
  • Suvari, F., Ulcay, Y., & Pourdeyhimi, B. (2016). Sound absorption analysis of thermally bonded high-loft nonwovens. Textile Research Journal, 86(8), 837–847. https://doi.org/10.1177/0040517515590412
  • Toyoda, M., Sakagami, K., Okano, M., Okuzono, T., & Toyoda, E. (2017). Improved sound absorption performance of three-dimensional MPP space sound absorbers by filling with porous materials. Applied Acoustics, 116(2017), 311–316. https://doi.org/10.1016/j.apacoust.2016.10.006
  • Vican, I., Jambrosic, K., & Domitrovic, H. (2015). Improvement of acoustic resistance equations in perforated plate absorbers with thin porous layers. Noise Control Engineering Journal, 63(5), 415–423. https://doi.org/10.3397/1/376337
  • Wang, H., Zhu, Z., Yuan, J., Wang, H., Wang, Z., Yang, F., Zhan, J., & Wang, L. (2021). A new recycling strategy for preparing flame retardants from polyphenylene sulfide waste textiles. Composites Communications, 27, 100852. https://doi.org/10.1016/j.coco.2021.100852
  • Xiang, H., Tan, S., Yu, X., Long, Y., Zhang, X., Zhao, N., & Xu, J. (2011). Sound absorption behavior of electrospun polyacrylonitrile nanofibrous membranes. Chinese Journal of Polymer Science, 29(6), 650–657. https://doi.org/10.1007/s10118-011-1079-x
  • Xiang, H., Zhang, L., Wang, Z., Yu, X., Long, Y., Zhang, X., Zhao, N., & Xu, J. (2011). Multifunctional polymethylsilsesquioxane (PMSQ) surfaces prepared by electrospinning at the sol–gel transition: Superhydrophobicity, excellent solvent resistance, thermal stability and enhanced sound absorption property. Journal of Colloid and Interface Science, 359(1), 296–303. https://doi.org/10.1016/j.jcis.2011.03.076
  • Xu, Y., Li, Y., Zhang, A., & Bao, J. (2017). Epoxy foams with tunable acoustic absorption behavior. Materials Letters, 194, 234–237. https://doi.org/10.1016/j.matlet.2017.02.054
  • Xu, H., Wang, S., Gong, X., Yang, M., Liu, X., Zhang, S., Yu, J., & Ding, B. (2022). Superelastic, ultralight, and washable electrospun fibrous sponges for effective warmth retention. Composites Communications, 29, 101024. https://doi.org/10.1016/j.coco.2021.101024
  • Yang, Y., Chen, Z., Chen, Z., Fu, R., & Li, Y. (2015). Sound insulation properties of sandwich structures on glass fiber felts. Fibers and Polymers, 16(7), 1568–1577. https://doi.org/10.1007/s12221-015-5200-6
  • Zaarour, B., Zhu, L., Huang, C., & Jin, X. (2020). A mini review on the generation of ultrathin fibers via electrospinning: Materials, strategies, and applications. Polymers for Advanced Technologies, 31(7), 1449–1462. https://doi.org/10.1002/pat.4876
  • Zhang, Z., Feng, L., Qiu, F., & Lan, B. (2004). Advances in fire-retardant inorganic nanomaterials. Progress in Chemistry, 16(04), 508–515. https://doi.org/10.3321/j.issn:1005-281X.2004.04.005
  • Zhang, R., Gong, X., Wang, S., Tian, Y., Liu, Y., Zhang, S., Yu, J., & Ding, B. (2021). Superelastic and fire-retardant nano-/microfibrous sponges for high-efficiency warmth retention. ACS Applied Materials & Interfaces, 13(48), 58027–58035. https://doi.org/10.1021/acsami.1c19850
  • Zhang, S., Liu, H., Tang, N., Zhou, S., Yu, J., & Ding, B. (2020). Spider-web-inspired PM0.3 filters based on self-sustained electrostatic nanostructured networks. Advanced Materials, 32(29), 2002361. https://doi.org/10.1002/adma.202006930
  • Zhang, S., Liu, H., Yu, J., Li, B., & Ding, B. (2020). Multi-functional flexible 2D carbon nanostructured networks. Nature Communications, 11(1), 5134. https://doi.org/10.1038/s41467-020-18977-6
  • Zhang, Y., Wang, C., Chen, S., & Wang, X. (2021). Research progress in Polytherimide foaming technology. China Plastics, 35(4), 124. https://doi.org/10.19491/j.issn.1001-9278.2021.04.020
  • Zhao, L., Wu, H., Jiao, W., Yin, X., Si, Y., Yu, J., & Ding, B. (2021). Superelastic, lightweight, and flame-retardant 3D fibrous sponge fabricated by one-step electrospinning for heat retention. Composites Communications, 25, 100681. https://doi.org/10.1016/j.coco.2021.100681
  • Zhao, R., Lu, X., & Wang, C. (2018). Electrospinning based all-nano composite materials: Recent achievements and perspectives. Composites Communications, 10, 140–150. https://doi.org/10.1016/j.coco.2018.09.005
  • Zhu, J., Sun, J., Tang, H., Wang, J., Ao, Q., Bao, T., & Song, W. (2016). Gradient-structural optimization of metal fiber porous materials for sound absorption. Powder Technology, 301, 1235–1241. https://doi.org/10.1016/j.powtec.2016.08.006
  • Zong, D., Bai, W., Geng, M., Yin, X., Yu, J., Zhang, S., & Ding, B. (2022). Bubble templated flexible ceramic nanofiber aerogels with cascaded resonant cavities for high-temperature noise absorption. ACS Nano, 16(9), 13740–13749. https://doi.org/10.1021/acsnano.2c06011
  • Zong, D., Cao, L., Li, Y., Yin, X., Si, Y., Yu, J., & Ding, B. (2020). Interlocked dual-network and superelastic electrospun fibrous sponges for efficient low-frequency noise absorption. Small Structures, 1(2), 2000004. https://doi.org/10.1002/sstr.202000004
  • Zong, D., Cao, L., Yin, X., Si, Y., Zhang, S., Yu, J., & Ding, B. (2021). Flexible ceramic nanofibrous sponges with hierarchically entangled graphene networks enable noise absorption. Nature Communications, 12(1), 1–11. https://doi.org/10.1038/s41467-021-26890-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.