344
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Development of thermal liner for extreme heat protective clothing using aerogel technology

, ORCID Icon, & ORCID Icon
Pages 803-812 | Received 10 Nov 2022, Accepted 16 Mar 2023, Published online: 02 May 2023

References

  • Arat, R., Baskan, H., Ozcan, G., & Altay, P. (2022). Hydrophobic silica-aerogel integrated polyacrylonitrile nanofibers. Journal of Industrial Textiles, 51(3_suppl), 4740S–4756S. https://doi.org/10.1177/1528083720939670
  • Chakraborty, S., Pisal, A. A., Kothari, V. K., & Venkateswara Rao, A. (2016). Synthesis and characterization of fibre reinforced silica aerogel blankets for thermal protection. Advances in Materials Science and Engineering, 2016, 1–8. https://doi.org/10.1155/2016/2495623
  • Das, T., Das, A., & Alagirusamy, R. (2022). Study on thermal protective performance of thermal liner in a multi-layer clothing under radiant heat exposure. Journal of Industrial Textiles, 51(5_suppl), 8208S–8226S. https://doi.org/10.1177/15280837221094057
  • Du, Y., & Kim, H. E. (2022). Research trends of the application of aerogel materials in clothing. Fashion and Textiles, 9(1), 23. https://doi.org/10.1186/s40691-022-00298-5
  • Furmański, P., & Łapka, P. (2017). Evaluation of a human skin surface temperature for the protective clothing – Skin system based on the protective clothing–skin imitating material results. International Journal of Heat and Mass Transfer, 114, 1331–1340. https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.033
  • Gibson, P., & Lee, C. (2004). Application of nanofiber technology to nonwoven thermal insulation [Paper presentation]. Proceedings of 14th Annual International TANDEC Nonwovens Conference, 2(2), 1–14. https://doi.org/10.1177/155892500700200204
  • Hoschke, B. N. (1981). Standards and specifications for firefighters’ clothing. Fire Safety Journal, 4(2), 125–137. https://doi.org/10.1016/0379-7112(81)90011-4
  • Hu, Y., Huang, D., Qi, Z., He, S., Yang, H., & Zhang, H. (2013). Modeling thermal insulation of firefighting protective clothing embedded with phase change material. Heat and Mass Transfer, 49(4), 567–573. https://doi.org/10.1007/s00231-012-1103-x
  • Kistler, S. S., & Caldwell, A. G. (1934). Thermal conductivity of silica aërogel. Industrial & Engineering Chemistry, 26(6), 658–662. https://doi.org/10.1021/ie50294a016
  • Krzemińska, S., Greszta, A., Różański, A., Safandowska, M., & Okrasa, M. (2019). Effects of heat exposure on the properties and structure of aerogels for protective clothing applications. Microporous and Mesoporous Materials, 285(March), 43–55. https://doi.org/10.1016/j.micromeso.2019.04.052
  • Malaquias, A. F., Neves, S. F., & Campos, J. B. L. M. (2023). Incorporation of phase change materials in fire protective clothing considering the presence of water. International Journal of Thermal Sciences, 183(September 2021), 107870. https://doi.org/10.1016/j.ijthermalsci.2022.107870
  • Malchaire, J., Kampmann, B., Havenith, G., Mehnert, P., & Gebhardt, H. J. (2000). Criteria for estimating acceptable exposure times in hot working environments: A review. International Archives of Occupational and Environmental Health, 73(4), 215–220. https://doi.org/10.1007/s004200050420
  • McCarthy, L. K., & di Marzo, M. (2012). The application of phase change material in fire fighter protective clothing. Fire Technology, 48(4), 841–864. https://doi.org/10.1007/s10694-011-0248-3
  • McNeil, S. J., & Gupta, H. (2022). Emerging applications of aerogels in textiles. Polymer Testing, 106, 107426. https://doi.org/10.1016/j.polymertesting.2021.107426
  • Pan, Y., Zheng, J., Xu, Y., Chen, X., Yan, M., Li, J., Zhao, X., Feng, Y., Ma, Y., Ding, M., Wang, R., & He, J. (2022). Ultralight, highly flexible in situ thermally crosslinked polyimide aerogels with superior mechanical and thermal protection properties via nanofiber reinforcement. Journal of Colloid and Interface Science, 628(Pt A), 829–839. https://doi.org/10.1016/j.jcis.2022.07.144
  • Qi, Z., Huang, D., He, S., Yang, H., Hu, Y., Li, L., & Zhang, H. (2013). Thermal protective performance of aerogel embedded firefighter’s protective clothing. Journal of Engineered Fibers and Fabrics, 8(2), 155892501300800. https://doi.org/10.1177/155892501300800216
  • Rajput, B., Mahesh, N., Rathour, R., Das, T., Ray, B., Das, A., & Talukdar, P. (2022). Performance analysis of multilayer flame- retardant fabric ensembles for different exposure conditions using numerical modeling. The Journal of the Textile Institute, 0(0), https://doi.org/10.1080/00405000.2022.2156717
  • Rathour, R., Das, A., & Alagirusamy, R. (2022). Impact of repeated radiative heat exposure on protective performance of firefighter’s protective clothing. Journal of Industrial Textiles, 52, 152808372211176. https://doi.org/10.1177/15280837221117610
  • Rathour, R., Das, A., & Alagirusamy, R. (2022). Studies on the influence of process parameters on the protection performance of the outer layer of fire-protective clothing. Journal of Industrial Textiles, 51(5_suppl), 8107S–8126S. https://doi.org/10.1177/15280837211054582
  • Rathour, R., Das, A., & Alagirusamy, R. (2022). Study on the influence of constructional parameters on performance of outer layer of thermal protective clothing. The Journal of the Textile Institute, 0(0), 1–11. https://doi.org/10.1080/00405000.2022.2124650
  • Rathour, R., Rajput, B., Das, A., & Alagirusamy, R. (2022). Performance analysis of shell fabric of fire protective clothing for different process parameters. The Journal of the Textile Institute, 0(0), 1–10. https://doi.org/10.1080/00405000.2022.2145441
  • Song, G., Cao, W., & Gholamreza, F. (2011). Analyzing stored thermal energy and thermal protective performance of clothing. Textile Research Journal, 81(11), 1124–1138. https://doi.org/10.1177/0040517511398943
  • Song, G., Paskaluk, S., Sati, R., Crown, E. M., Dale, J. D., & Ackerman, M. (2011b). Thermal protective performance of protective clothing used for low radiant heat protection. Textile Research Journal, 81(3), 311–323. https://doi.org/10.1177/0040517510380108
  • Song, G., Paskaluk, S., Sati, R., Crown, E. M., Dale, J. D., Ackerman, M. (2011a). Thermal protective performance of protective clothing used for low radiant heat protection. September 2018. https://doi.org/10.1177/0040517510380108
  • Stoll, A. M., & Greene, L. C. (1959). Relationship between pain and tissue damage due to thermal radiation. Journal of Applied Physiology, 14(3), 373–382. doi: 10.1152/jappl.1959.14.3.373
  • Udayraj, T. P., Das, A., & Alagirusamy, R. (2016). Heat and mass transfer through thermal protective clothing - A review. International Journal of Thermal Sciences, 106, 32–56. https://doi.org/10.1016/j.ijthermalsci.2016.03.006
  • Xu, T., Ma, Y., Yuan, Q., Hu, H., Hu, X., Qian, Z., Rolle, J. K., Gu, Y., & Li, S. (2020). Enhanced ferroptosis by oxygen-boosted phototherapy based on a 2-in-1 nanoplatform of ferrous hemoglobin for tumor synergistic therapy. ACS Nano, 14(3), 3414–3425. https://doi.org/10.1021/acsnano.9b09426
  • Xue, R., Liu, G., & Liu, F. (2023). A simple and efficient method for the preparation of SiO 2/PI/AF aerogel composite fabrics and their thermal insulation performance. Ceramics International, 49July. (1), 210–215. https://doi.org/10.1016/j.ceramint.2022.08.330

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.