1,674
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Investigating how the dye colour is impacted when chemically separating polyester-cotton blends

ORCID Icon, &
Pages 656-666 | Received 10 May 2022, Accepted 07 Feb 2023, Published online: 03 May 2023

References

  • Ambercycle, I. (2021). Cycora. Available from https://cycora.com/about/.
  • Awaja, F., & Pavel, D. (2005). Recycling of PET. European Polymer Journal, 41(7), 1453–1477.
  • Badia, J. D., Strömberg, E., Karlsson, S., & Ribes-Greus, A. (2012). The role of crystalline, mobile amorphous and rigid amorphous fractions in the performance of recycled poly (ethylene terephthalate) (PET). Polymer Degradation and Stability, 97(1), 98–107. https://doi.org/10.1016/j.polymdegradstab.2011.10.008
  • Better Thinking Ltd. (2006). Dyeing for a change: Current conventions and new futures in the textile colour industry/​rrent c Thinking Ltd. In Better thinking’s perfect t-shirt.
  • Brooks, R. E., & Moore, S. B. (2000). Alkaline hydrogen peroxide bleaching of cellulose. Cellulose, 7(3), 263–286. https://doi.org/10.1023/A:1009273701191
  • Chen, X., Memon, H. A., Wang, Y., Marriam, I., & Tebyetekerwa, M. (2021). Circular economy and sustainability of the clothing and textile industry. Materials Circular Economy, 3(1), 12. https://doi.org/10.1007/s42824-021-00026-2
  • De Silva, R., & Byrne, N. (2017). Utilization of cotton waste for regenerated cellulose fibres: Influence of degree of polymerization on mechanical properties. Carbohydrate Polymers, 174, 89–94. https://doi.org/10.1016/j.carbpol.2017.06.042
  • De Silva, R., Wang, X., & Byrne, N. (2014). Recycling textiles: The use of ionic liquids in the separation of cotton polyester blends. RSC Adv, 4(55), 29094–29098. https://doi.org/10.1039/C4RA04306E
  • El Seoud, O. A., Bioni, T. A., & Dignani, M. T. (2021). Understanding cellulose dissolution in ionic liquid-dimethyl sulfoxide binary mixtures: Quantification of the relative importance of hydrogen bonding and hydrophobic interactions. Journal of Molecular Liquids, 322, 114848. https://doi.org/10.1016/j.molliq.2020.114848
  • Ellen MacArthur Foundation. (2021). Textile-to-textile recycling to reduce virgin material demand: The green machine. Available from: https://ellenmacarthurfoundation.org/circular-examples/textile-to-textile-recycling-to-reduce-virgin-material-demand-the-green.
  • Elsayed, S., Hellsten, S., Guizani, C., Witos, J., Rissanen, M., Rantamäki, A. H., Varis, P., Wiedmer, S. K., & Sixta, H. (2020). Recycling of superbase-based ionic liquid solvents for the production of textile-grade regenerated cellulose fibers in the lyocell process. ACS Sustainable Chemistry & Engineering, 8(37), 14217–14227. https://doi.org/10.1021/acssuschemeng.0c05330
  • Esteve-Turrillas, F. A., & de la Guardia, M. (2017). Environmental impact of recover cotton in textile industry. Resources, Conservation and Recycling, 116, 107–115. https://doi.org/10.1016/j.resconrec.2016.09.034
  • Evrnu, S. P. C. (2020). Now, single-life textiles are a multi-life resource. Available from: https://www.evrnu.com/nucycl.
  • Harmsen, P., Scheffer, M., & Bos, H. (2021). Textiles for circular fashion: The Logic behind recycling options. Sustainability, 13(17), 9714. https://doi.org/10.3390/su13179714
  • Haslinger, S., Hummel, M., Anghelescu-Hakala, A., Määttänen, M., & Sixta, H. (2019). Upcycling of cotton polyester blended textile waste to new man-made cellulose fibers. Waste Management (New York, N.Y.), 97, 88–96. https://doi.org/10.1016/j.wasman.2019.07.040
  • Haslinger, S., Wang, Y., Rissanen, M., Lossa, M. B., Tanttu, M., Ilen, E., Määttänen, M., Harlin, A., Hummel, M., & Sixta, H. (2019). Recycling of vat and reactive dyed textile waste to new colored man-made cellulose fibers. Green Chemistry, 21(20), 5598–5610. https://doi.org/10.1039/C9GC02776A
  • Jaffe, M., & East, A. J. (2006). Polyester fibers. In M. Lewin, (Ed.), Handbook of fiber chemistry (pp. 1–29). Taylor & Francis Group.
  • Keh, E. (2021). New paradigm for R&D and business model of textile circularity. In L. Liu & S. Ramakrishna (Ed.), An introduction to circular economy (pp. 325–347). Singapore.
  • Kim, Y., McCoy, L. T., Lee, E., Lee, H., Saremi, R., Feit, C., Hardin, I. R., Sharma, S., Mani, S., & Minko, S. (2017). Environmentally sound textile dyeing technology with nanofibrillated cellulose. Green Chemistry, 19(17), 4031–4035. https://doi.org/10.1039/C7GC01662J
  • Levi Strauss & Co. (2021). Bringing innovation to an icon. Available from: https://www.levistrauss.com/2021/12/13/bringing-innovation-to-an-icon/.
  • Lindström, F. (2018). Chemical and physical changes in PET fibres due to exhaust dyeing. In The Swedish school of textiles. University of Borås.
  • Ling, C., Shi, S., Hou, W., & Yan, Z. (2019). Separation of waste polyester/cotton blended fabrics by phosphotungstic acid and preparation of terephthalic acid. Polymer Degradation and Stability, 161, 157–165. https://doi.org/10.1016/j.polymdegradstab.2019.01.022
  • Lv, F., Wang, C., Zhu, P., & Zhang, C. (2015). Isolation and recovery of cellulose from waste nylon/cotton blended fabrics by 1-allyl-3-methylimidazolium chloride. Carbohydrate Polymers, 123, 424–431. https://doi.org/10.1016/j.carbpol.2015.01.043
  • Ma, Y., Rosson, L., Wang, X., & Byrne, N. (2020). Upcycling of waste textiles into regenerated cellulose fibres: Impact of pretreatments. The Journal of the Textile Institute, 111(5), 630–638. https://doi.org/10.1080/00405000.2019.1656355
  • Mai, N. L., Ahn, K., & Koo, Y.-M. (2014). Methods for recovery of ionic liquids: A review. Process Biochemistry, 49(5), 872–881. https://doi.org/10.1016/j.procbio.2014.01.016
  • Michud, A., Tanttu, M., Asaadi, S., Ma, Y., Netti, E., Kääriainen, P., Persson, A., Berntsson, A., Hummel, M., & Sixta, H. (2016). Ioncell-F: Ionic liquid-based cellulosic textile fibers as an alternative to viscose and Lyocell. Textile Research Journal, 86(5), 543–552. https://doi.org/10.1177/0040517515591774
  • Motte, H., Palme, A. (2019). The development of the Blend Re: Wind process. Available from: http://mistrafuturefashion.com/wp-content/uploads/2018/06/Mistra-Future-Fashion-2018-5-H.-dl.-Motte.-Blend-Re-wind.pdf.
  • Nasri-Nasrabadi, B., Wang, X., & Byrne, N. (2020). Perpetual colour: Accessing the colourfastness of regenerated cellulose fibres from coloured cotton waste. The Journal of the Textile Institute, 111(12), 1745–1754. https://doi.org/10.1080/00405000.2020.1728182
  • Ouchi, A., Toida, T., Kumaresan, S., Ando, W., & Kato, J. (2010). A new methodology to recycle polyester from fabric blends with cellulose. Cellulose, 17(1), 215–222. https://doi.org/10.1007/s10570-009-9358-1
  • Palme, A., Peterson, A., de la Motte, H., Theliander, H., & Brelid, H. (2017). Development of an efficient route for combined recycling of PET and cotton from mixed fabrics. Textiles and Clothing Sustainability, 3(1), 4. https://doi.org/10.1186/s40689-017-0026-9
  • Patagonia, I. (2021). Recycled materials. Available from https://www.patagonia.com.au/pages/recycled.
  • Philipp, B. (1984). Degradation of cellulose—mechanisms and applications. Pure and Applied Chemistry, 56(3), 391–402. https://doi.org/10.1351/pac198456030391
  • Shamsuri, A. A., Abdan, K., & Jamil, S. (2021). Properties and applications of cellulose regenerated from cellulose/imidazolium-based ionic liquid/co-solvent solutions: A short review. e-Polymers, 21(1), 869–880. https://doi.org/10.1515/epoly-2021-0086
  • Shang, S. M., et al. (2013). 13 - Process control in dyeing of textiles. In A. Majumdar (Ed.), Process control in textile manufacturing (pp. 300–338). Woodhead Publishing.
  • Sharma, V., Parashar, P., Srivastava, P., Kumar, S., Agarwal, D. D., & Richharia, N. (2013). Recycling of waste PET-bottles using dimethyl sulfoxide and hydrotalcite catalyst. Journal of Applied Polymer Science, 129(3), 1513–1519. https://doi.org/10.1002/app.38829
  • Sixta, H., Michud, A., Hauru, L., Asaadi, S., Ma, Y., King, A. W., Kilpeläinen, I., & Hummel, M. (2015). Ioncell-F: A high-strength regenerated cellulose fibre. Nordic Pulp & Paper Research Journal, 30(1), 43–57. https://doi.org/10.3183/npprj-2015-30-01-p043-057
  • Subramanian, K., Sarkar, M. K., Wang, H., Qin, Z.-H., Chopra, S. S., Jin, M., Kumar, V., Chen, C., Tsang, C.-W., & Lin, C. S. K. (2022). An overview of cotton and polyester, and their blended waste textile valorisation to value-added products: A circular economy approach—research trends, opportunities and challenges. Critical Reviews in Environmental Science and Technology, 52(21), 3921–3942. https://doi.org/10.1080/10643389.2021.1966254
  • Sun, X., Wang, X., Sun, F., Tian, M., Qu, L., Perry, P., Owens, H., & Liu, X. (2021). Textile waste fiber regeneration via a green chemistry approach: A molecular strategy for sustainable fashion. Advanced Materials, 33(48), 2105174. https://doi.org/10.1002/adma.202105174
  • Wakelyn, P. J., et al. (2006). Cotton fibers. In M. Lewin (Ed.), Handbook of fiber chemistry (pp 521–666). Taylor & Francis Group.
  • Wang, H., Li, Z., Liu, Y., Zhang, X., & Zhang, S. (2009). Degradation of poly(ethylene terephthalate) using ionic liquids. Green Chemistry, 11(10), 1568–1575. https://doi.org/10.1039/b906831g
  • Whetzel, N. (2008). The Kubelka-Monk Theory and K/S.
  • Wu, B., et al. (2014). Recycled waste polyester textiles decoloration by DMSO. Journal of Textile Research, 35(4), 80–84.
  • Wu, H., Lv, S., He, Y., & Qu, J.-P. (2019). The study of the thermomechanical degradation and mechanical properties of PET recycled by industrial-scale elongational processing. Polymer Testing, 77, 105882. https://doi.org/10.1016/j.polymertesting.2019.04.029
  • Xu, S., Chen, J., Wang, B., & Yang, Y. (2016). An environmentally responsible polyester dyeing technology using liquid paraffin. Journal of Cleaner Production, 112, 987–994. https://doi.org/10.1016/j.jclepro.2015.08.114
  • Yoshioka, T., Sato, T., & Okuwaki, A. (1994). Hydrolysis of waste PET by sulfuric acid at 150 °C for a chemical recycling. Journal of Applied Polymer Science, 52(9), 1353–1355. https://doi.org/10.1002/app.1994.070520919
  • Yuan, Z.-W., Zhu, Y.-N., Shi, J.-K., Liu, X., & Huang, L. (2013). Life-cycle assessment of continuous pad-dyeing technology for cotton fabrics. The International Journal of Life Cycle Assessment, 18(3), 659–672. https://doi.org/10.1007/s11367-012-0470-3
  • Yue, Y. (2011). A comparative study of cellulose I and II and fibers and nanocrystals. In The school of renewable natural resources. Louisiana State University and Agricultural and Mechanical College.
  • Zhou, T., Wang, Y., Zheng, H., Du, B., & Zheng, L. (2022). Sustainable and eco-friendly strategies for polyester-cotton blends dyeing in supercritical CO2. Journal of CO2 Utilization, 55, 101816. https://doi.org/10.1016/j.jcou.2021.101816