70
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Curvature evaluation of metal wires in plain weave structure via the elasto-plastic finite element analysis

, &
Pages 791-802 | Received 12 Oct 2021, Accepted 10 Mar 2023, Published online: 29 Apr 2023

References

  • Ahmad, Z., Eldeeb, M., Iqbal, S., & Mazari, A. (2018). Effect of yarn structure on cover factor in woven fabrics. Industria Textila, 69, 197–201. https://www.proquest.com/openview/17a09642ed273326e914a8ca062f9d4a/1?pq-origsite=gscholar&cbl=2035127
  • Ahmad, Z., & Sirková, B. K. (2020). Analysis of mutual interlacing of threads in multifilament single layer and two layer woven fabric structure using fourier series. The Journal of the Textile Institute, 111(1), 93–107. https://doi.org/10.1080/00405000.2019.1621043
  • Amini, R., Mashroteh, H., & Vadood, M. (2020). A novel approach to the poisson’s ratio of the yarn. The Journal of the Textile Institute, 111(7), 999–1007. https://doi.org/10.1080/00405000.2019.1678236
  • Assidi, M., Ben Boubaker, B., & Ganghoffer, J. F. (2011). Equivalent properties of monolayer fabric from mesoscopic modelling strategies. International Journal of Solids and Structures, 48(20), 2920–2930. https://doi.org/10.1016/j.ijsolstr.2011.06.010
  • Avanaki, M. J., & Jeddi, A. A. (2017). Theoretical analysis of geometrical and mechanical parameters in plain woven structures. The Journal of the Textile Institute, 108(3), 418–427. https://doi.org/10.1080/00405000.2016.1169011
  • Boisse, P., Gasser, A., & Hivet, G. (2001). Analyses of fabric tensile behaviour: Determination of the biaxial tension-strain surfaces and their use in forming simulations. Composites Part A: Applied Science and Manufacturing, 32(10), 1395–1414. https://doi.org/10.1016/S1359-835X(01)00039-2
  • Borrvall, T. (2008). Mortar contact algorithm for implicit stamping analyses in ls-dyna. Proceedings of 10th International ls-Dyna Users Conference (p.19–28). https://www.dynalook.com/conferences/international-conf-2008/MetalForming2-3.pdf
  • Boubaker, B. B., Haussy, B., & Ganghoffer, J.-F. (2007a). Consideration of the yarn–yarn interactions in meso/macro discrete model of fabric: Part II: Woven fabric under uniaxial and biaxial extension. Mechanics Research Communications, 34(4), 371–378. https://www.sciencedirect.com/science/article/pii/S0093641307000067 https://doi.org/10.1016/j.mechrescom.2007.02.002
  • Boubaker, B. B., Haussy, B., & Ganghoffer, J.-F. (2007b). Consideration of the yarn–yarn interactions in meso/macro discrete model of fabric. Part I: Single yarn behaviour. Mechanics Research Communications, 34(4), 359–370. https://www.sciencedirect.com/science/article/pii/S0093641307000055 https://doi.org/10.1016/j.mechrescom.2007.02.003
  • Boussu, F., Dufour, C., Veyet, F., & Lefebvre, M. (2015). 3 - weaving processes for composites manufacture. In P. Boisse (Ed.), Advances in composites manufacturing and process design (pp. 55–78). Woodhead Publishing. https://www.sciencedirect.com/science/article/pii/B9781782423072000038
  • Chattopadhyay, R. (2008). Design of apparel fabrics: Role of fibre, yarn and fabric parameters on its functional attributes. Journal of Textile Engineering, 54(6), 179–190. https://doi.org/10.4188/jte.54.179
  • Durville, D. (2010). Simulation of the mechanical behaviour of woven fabrics at the scale of fibers. International Journal of Material Forming, 3(S2), 1241–1251. https://doi.org/10.1007/s12289-009-0674-7
  • DYNAmore. (2022). Negative volume in soft materials. https://www.dynasupport.com/howtos/material/negative-volume-in-soft-materials (viewed November 15th, 2022).
  • Ferranto, J., & Luo, S. (2015). Finite element modeling of plain weave fabric from an unwoven initial yarn configuration. Strength of Materials, 47(6), 903–911. https://doi.org/10.1007/s11223-015-9727-y
  • Ghane, M., Azimpour, I., & Ravandi, S. A. H. (2011). A small deflection model for yarn bending in a plain weave fabric. International Journal of Clothing Science and Technology, 23(5), 310–320. https://doi.org/10.1108/09556221111166248
  • Grechukhin, A., & Rudovskiy, N. (2021). New geometrical model of woven fabric taking into account the change of its form, size and lateral bending. Fibres and Textiles in Eastern Europe, 29(2(146), 20–24. https://doi.org/10.5604/01.3001.0014.6076
  • Hamilton, J. B. (1964). 7—a general system of woven-fabric geometry. Journal of the Textile Institute Transactions, 55(1), T66–T82. https://doi.org/10.1080/19447026408660209
  • Hartmann, M., J¨ager, S., Roschitz, M., Horr, A. (2014). Development of a unit cell model for structural metal sheets using ∗constrained multiple global. 13th ls-dyna forum. https://www.dynamore.de/de/download/papers/dynamore/de/download/papers/2014-ls-dyna-forum/documents/prozesssimulation-iv/development-of-a-unit-cell-model-for-structural-metal-sheets-using-constrainedmultiple global
  • Hearle, J. W. S., & Shanahan, W. J. (1978). 11—an energy method for calculations in fabric mechanics Part I: Principles of the method. The Journal of the Textile Institute, 69(4), 81–91. https://doi.org/10.1080/00405007808631425
  • Kawabata, S., Niwa, M., & Kawai, H. (1973). 3—the finite-deformation theory of plain-weave fabrics Part I: The biaxial-deformation theory. The Journal of the Textile Institute, 64(1), 21–46. https://doi.org/10.1080/00405007308630416
  • Kemp, A. (1958). An extension peirce’s cloth geometry to the treatment of non-circular threads. Journal of the Textile Institute Transactions, 49(1), T44–T48. https://doi.org/10.1080/19447025808660119
  • Kloosterman, G. (2002). Contact methods in finite element simulations [Doctoral dissertation]. Ponsen & Looijen. https://research.utwente.nl/en/publications/contact-methods-in-finite-element-simulations
  • Kolcavova Sirkova, B., & Vysanska, M. (2012). Methodology for evaluation of fabric geometry on the basis of the fabric cross-section. Fibres and Textiles in Eastern Europe, 20(5), 41–47. https://bibliotekanauki.pl/articles/232542
  • Koncar, V. (2019). 2 - composites and hybrid structures. In V. Koncar (Ed.), Smart textiles for in situ monitoring of composites (pp. 153–215). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-102308-2.00002-4
  • Kovar, R. (2011). Length of the yarn in plain-weave crimp wave. Journal of the Textile Institute, 102(7), 582–597. https://doi.org/10.1080/00405000.2010.498175
  • Leaf, G., & Kandil, K. (1980). 1—the initial load-extension behaviour of plain-woven fabrics. The Journal of the Textile Institute, 71(1), 1–7. https://doi.org/10.1080/00405008008631627
  • Lomov, S. (2011). 7 - modelling the geometry of textile reinforcements for composites: Wisetex. In P. Boisse (Ed.), Composite reinforcements for optimum performance (pp. 200–238). Woodhead Publishing. https://doi.org/10.1533/9780857093714.2.200
  • Lomov, S., Huysmans, G., & Verpoest, I. (2001). Hierarchy of textile structures and architecture of fabric geometric models. Textile Research Journal, 71(6), 534–543. https://doi.org/10.1177/004051750107100611
  • LS-DYNA-R11. (2018). Ls-dyna®keyword user’s manual volume I [Computer software manual]. https://www.dynasupport.com/manuals/ls-dyna-manuals
  • Miyaki, H., & Sakuma, A. (2018). Phantom-element technique for periodic deformation analysis of plain fabrics using ls-dyna. In Proceedings of the ASME 2018 International Mechanical Engineering Congress and Exposition (p. V009T12A050). https://doi.org/10.1115/IMECE2018-87459
  • Miyaki, H., Sakuma, A. (2021). Diagram design of weaving process for touch-feel estimation of plain-woven fabrics by finite element method. In Proceedings of the ASME 2020 International Mechanical Engineering Congress and Exposition (p. V02BT02A048). https://doi.org/10.1115/IMECE2020-24563
  • Moestopo, W. P., Mateos, A. J., Fuller, R. M., Greer, J. R., & Portela, C. M. (2020). Pushing and pulling on ropes: Hierarchical woven materials. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 7(20), 2001271. https://doi.org/10.1002/advs.202001271
  • Mollanoori, M., & Alamdar-Yazdi, A. (2012). Twist direction effect on the mechanical properties of woven fabric. Fibres and Textiles in Eastern Europe, 94(5), 48–55. https://www.semanticscholar.org/paper/Twist-Direction-Effect-on-the-Mechanical-Properties-Mollanoori-Alamdar-Yazdi/53b7006eebc72f60e2463f076c4eaee3b4b4b929#citing-papers
  • Naouar, N., Vasiukov, D., Park, C., Lomov, S., & Boisse, P. (2020). Meso-fe modelling of textile composites and x-ray tomography. Journal of Materials Science, 55(36), 16969–16989. https://doi.org/10.1007/s10853-020-05225-x
  • Ohsawa, M., & Namiki, S. (1963). Studies on the jammed structures in cloth geometry. Sen’i Gakkaishi, 19(4), 295–303. https://doi.org/10.2115/fiber.19.295
  • Peirce, F. T. (1937). 5—the geometry of cloth structure. Journal of the Textile Institute Transactions, 28(3), T45–T96. https://doi.org/10.1080/19447023708658809
  • Peirce, F. T. (1947). Geometrical principles applicable to the design of functional fabrics. Textile Research Journal, 17(3), 123–147. https://doi.org/10.1177/004051754701700301
  • Puso, M. A., & Laursen, T. A. (2004). A mortar segment-to-segment contact method for large deformation solid mechanics. Computer Methods in Applied Mechanics and Engineering, 193(6–8), 601–629. https://doi.org/10.1016/j.cma.2003.10.010
  • Reese, S. P., Maas, S. A., & Weiss, J. A. (2010). Micromechanical models of helical superstructures in ligament and tendon fibers predict large poisson’s ratios. Journal of Biomechanics, 43(7), 1394–1400. https://doi.org/10.1016/j.jbiomech.2010.01.004
  • Shanahan, W. J., & Hearle, J. W. S. (1978). 12—an energy method for calculations in fabric mechanics Part II: Examples of application of the method to woven fabrics. The Journal of the Textile Institute, 69(4), 92–100. https://doi.org/10.1080/00405007808631426
  • Toney, M. (2000). Computer modeling of fibrous structures. Journal of the Textile Institute, 91(3), 133–139. https://doi.org/10.1080/00405000008659546
  • Vinot, M., Holzapfel, M., & Jemmali, R. (2015). Numerical investigation of carbon braided composites at the mesoscale: Using computer tomography as a validation tool [Paper presentation]. In 10th European ls-Dyna Conference. https://elib.dlr.de/101301/
  • Whitcomb, J. D., Chapman, C. D., & Tang, X. (2000). Derivation of boundary conditions for micromechanics analyses of plain and satin weave composites. Journal of Composite Materials, 34(9), 724–747. https://doi.org/10.1177/002199830003400901
  • WiseTex-Suite. (2019). Ku leuven (ver.3.2). https://www.mtm.kuleuven.be/onderzoek/scalint/Composites/software/wisetex. (viewed January 14th, 2021).
  • Yilmaz, N. D., & Arifuzzaman Khan, G. (2019). 2 - flexural behavior of textile-reinforced polymer composites. In M. Jawaid, M. Thariq, & N. Saba (Eds.), Mechanical and physical testing of biocomposites, fibre-reinforced composites and hybrid composites (pp. 13–42). Woodhead Publishing. https://www.sciencedirect.com/science/article/pii/B9780081022924000023
  • Zhang, J., Miyaki, H., Sakuma, A. (2019). The elastoplasticity behavior of wire in inhomogeneous woven metal mesh. In XV International Conference on Computational Plasticity. fundamentals and Applications (pp. 378–384). http://hdl.handle.net/2117/181621
  • Zhu, C., Zhu, P., Liu, Z., Tao, W., & Chen, W. (2018). Hierarchical framework for quantifying multiscale structures of two-dimensional woven carbon fibre-reinforced composites considering geometric variability. Journal of Industrial Textiles, 48(4), 802–824. https://doi.org/10.1177/1528083717747333

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.