102
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Comfort and functional evaluation of silk/profiled antibacterial polyester fabric

ORCID Icon, , , , &
Pages 813-825 | Received 12 Sep 2022, Accepted 16 Mar 2023, Published online: 12 May 2023

References

  • Azari, A., Nabizadeh, R., & Mahvi, A. H. (2022). Integrated Fuzzy AHP-TOPSIS for selecting the best color removal process using carbon-based adsorbent materials: Multi-criteria decision making vs. systematic review approaches and modeling of textile wastewater treatment in real conditions. International Journal of Environmental Analytical Chemistry, 102, 7329–7344.
  • Das, B., Das, A., Kothari, V., Fanguiero, R., & Araujo, M. D. (2009). Moisture flow through blended fabrics—Effect of hydrophilicity. Journal of Engineered Fibers and Fabrics, 4, 20–28.
  • Datta Roy, M., Chattopadhyay, R., & Sinha, S. K. (2017). Wicking performance of profiled fibre part A: Assessment of yarn. Journal of the Institution of Engineers (India): Series E, 98(2), 155–163. https://doi.org/10.1007/s40034-017-0097-9
  • Fernandes, M., Gama, M., Dourado, F., & Souto, A. P. (2019). Development of novel bacterial cellulose composites for the textile and shoe industry. Microbial Biotechnology, 12(4), 650–661. https://doi.org/10.1111/1751-7915.13387
  • Gabbay, J., Borkow, G., Mishal, J., Magen, E., Zatcoff, R., & Shemer-Avni, Y. (2006). Copper oxide impregnated textiles with potent biocidal activities. Journal of Industrial Textiles, 35(4), 323–335. https://doi.org/10.1177/1528083706060785
  • Gocek, İ., & Duru, S. C. (2019). Investigating the effects of wicking and antibacterial finishing treatments on some comfort characteristics of Meryl skinlife for seamless activewear/sportswear. Journal of Engineered Fibers and Fabrics, 14, 1–13. https://doi.org/10.1177/1558925019852790
  • Hasan, M. K., Kayumov, J., Zhu, G., Khatun, M., Nur, A., & Ding, X. (2019). An experimental investigation to examine the wicking properties of silk fabrics. Journal of Textile Science and Technology, 5(4), 108–124. https://doi.org/10.4236/jtst.2019.54010
  • Hasan, M. M. B., Dutschk, V., Calvimontes, A., Hoffmann, G., Heinrich, G., & Cherif, C. (2008). Influence of the cross-sectional geometry on wettability and cleanability of polyester woven fabrics. Tenside Surfactants Detergents, 45(5), 274–279. https://doi.org/10.3139/113.100386
  • Hu, S. G., Jou, C. H., & Yang, M. C. (2002). Surface grafting of polyester fiber with chitosan and the antibacterial activity of pathogenic bacteria. Journal of Applied Polymer Science, 86(12), 2977–2983. https://doi.org/10.1002/app.11261
  • Jafari Khosroabadi, A., Hemmatinejad, N., & Bashari, A. (2019). Antibacterial PET-silk fabric containing Salvia officinalis extract. Journal of Natural Fibers, 16(2), 263–274. https://doi.org/10.1080/15440478.2017.1414656
  • Jahan, I. (2017). Effect of fabric structure on the mechanical properties of woven fabrics. Advance Research in Textile Engineering, 2(2), 1018. https://doi.org/10.26420/advrestexteng.2017.1018
  • Jeyaraj, J. M., Arumugam, M., & Kulandaiappan, V. (2016). A study on silk and its mixed fabric for functional properties. Walailak Journal of Science and Technology, 13, 913–922.
  • Kandhavadivu, P., Vigneswaran, C., Ramachandran, T., & Geethamanohari, B. (2011). Development of polyester-based bamboo charcoal and lyocell-blended union fabrics for healthcare and hygienic textiles. Journal of Industrial Textiles, 41(2), 142–159. https://doi.org/10.1177/1528083711400773
  • Kim, H. A. (2021). Water/moisture vapor permeabilities and thermal wear comfort of the Coolmax®/bamboo/tencel included PET and PP composite yarns and their woven fabrics. The Journal of The Textile Institute, 112(12), 1940–1953. https://doi.org/10.1080/00405000.2020.1853409
  • Koh, L.-D., Cheng, Y., Teng, C.-P., Khin, Y.-W., Loh, X.-J., Tee, S.-Y., Low, M., Ye, E., Yu, H.-D., Zhang, Y.-W., & Han, M.-Y. (2015). Structures, mechanical properties and applications of silk fibroin materials. Progress in Polymer Science, 46, 86–110. https://doi.org/10.1016/j.progpolymsci.2015.02.001
  • Lei, M., Li, Y., Liu, Y., Ma, Y., Cheng, L., & Hu, Y. Epub ahead of print (2020). Effect of weaving structures on the water wicking—Evaporating behavior of woven fabrics. Polymers, 12(2), 422. https://doi.org/10.3390/polym12020422
  • Li, X., Wang, H., Cai, Z., & Yu, J. (2015). Cationic dyeing properties of trilobal high dimethyl 5-sulfoisophthalate sodium salt (SIP) content cationic dyeable polyester (THCDP) fabrics. Journal of Textile Institute, 106(8), 835–844. https://doi.org/10.1080/00405000.2014.947748
  • Lu, Z., Zhang, H., Mao, C., & Li, C. M. (2016). Silk fabric-based wearable thermoelectric generator for energy harvesting from the human body. Applied Energy, 164, 57–63. https://doi.org/10.1016/j.apenergy.2015.11.038
  • Majumdar, A., Sarkar, B., & Majumdar, P. K. (2005). Determination of quality value of cotton fibre using hybrid AHP-TOPSIS method of multi-criteria decision-making. Journal of Textile Institute, 96(5), 303–309. https://doi.org/10.1533/joti.2005.0013
  • Mallick, P., & De, S. S. (2021). Study the wicking phenomena of cotton woven fabrics and its constituent yarns: Relation between fabric wicking and yarn wicking. Journal of Natural Fibers, 19, 5297–5309.
  • Manshahia, M., & Das, A. (2014). High active sportswear—A critical review. Indian Journal of Fibre & Textile Research, 39, 441–449.
  • Mongkholrattanasit, R., Kryštůfek, J., Wiener, J., & Viková, M. (2011). UV protection properties of silk fabric dyed with eucalyptus leaf extract. Journal of Textile Institute, 102(3), 272–279. https://doi.org/10.1080/00405001003722369
  • Nadiger, V. G., & Shukla, S. R. (2016). Antibacterial properties of silk fabric treated with silver nanoparticles. Journal of Textile Institute, 107(12), 1543–1553. https://doi.org/10.1080/00405000.2015.1129756
  • Nadiger, V. G., & Shukla, S. R. (2017). Antibacterial properties of silk fabric treated with Aloe Vera and silver nanoparticles. Journal of Textile Institute, 108(3), 385–396. https://doi.org/10.1080/00405000.2016.1167391
  • Pal, S. K., Gandhi, R. S., & Kothari, V. K. (1996). Effect of comonomer on structure and properties of textured cationic dyeable polyester. Journal of Applied Polymer Science, 61(3), 401–406. https://doi.org/10.1002/(SICI)1097-4628(19960718)61:3<401::AID-APP1>3.0.CO;2-M
  • Pan, N., & Zhong, W. (2006). Fluid transport phenomena in fibrous materials. Textile Progress, 38(2), 1–93. https://doi.org/10.1533/tepr.2006.0002
  • Patra, K. (2013). Application of nanotechnology in textile engineering: An overview. Journal of Engineering and Technology Research, 5(5), 104–111. https://doi.org/10.5897/JETR2013.0309
  • Pollini, M., Russo, M., Licciulli, A., Sannino, A., & Maffezzoli, A. (2009). Characterization of antibacterial silver coated yarns. Journal of Materials Science Materials in Medicine, 20(11), 2361–2366. https://doi.org/10.1007/s10856-009-3796-z
  • Radetić, M., Ilić, V., Vodnik, V., Dimitrijević, S., Jovančić, P., Šaponjić, Z., & Nedeljković, J. M. (2008). Antibacterial effect of silver nanoparticles deposited on corona-treated polyester and polyamide fabrics. Polymers for Advanced Technologies, 19(12), 1816–1821. https://doi.org/10.1002/pat.1205
  • Rainard, L. W. (1946). Air permeability of fabrics. Textile Research Journal, 16(10), 473–480. https://doi.org/10.1177/004051754601601001
  • Rani, K. V., Chandwani, N., Kikani, P., Nema, S. K., Sarma, A. K., & Sarma, B. (2018). Optimization and surface modification of silk fabric using DBD air plasma for improving wicking properties. Journal of Textile Institute, 109(3), 368–375. https://doi.org/10.1080/00405000.2017.1347230
  • Reddy, R. M. (2009). Innovative and multidirectional application of natural fibre, silk—A review. Academic Journal of Entomology, 2, 71–75.
  • Sanchez-Sanchez, J., Fernández-Ponce, M. T., Casas, L., Mantell, C., & de la Ossa, E. M. (2017). Impregnation of mango leaf extract into a polyester textile using supercritical carbon dioxide. Journal of Supercritical Fluids, 128, 208–217. https://doi.org/10.1016/j.supflu.2017.05.033
  • Simončič, B., Tomšič, B., Černe, L., Orel, B., Jerman, I., Kovač, J., Žerjav, M., & Simončič, A. (2012). Multifunctional water and oil repellent and antimicrobial properties of finished cotton: Influence of sol-gel finishing procedure. Journal of Sol-Gel Science and Technology, 61(2), 340–354. https://doi.org/10.1007/s10971-011-2633-2
  • Tran Thi, V. H., & Lee, B. K. (2017). Development of multifunctional self-cleaning and UV blocking cotton fabric with modification of photoactive ZnO coating via microwave method. Journal of Photochemistry and Photobiology A: Chemistry, 338, 13–22. https://doi.org/10.1016/j.jphotochem.2017.01.020
  • Ullah, H. M. K., Lejeune, J., Cayla, A., Monceaux, M., Campagne, C., & Devaux, É. (2022). A review of noteworthy/major innovations in wearable clothing for thermal and moisture management from material to fabric structure. Textile Research Journal, 92(17–18), 3351–3386. https://doi.org/10.1177/00405175211027799
  • Wang, C., Li, X., Gao, E., Jian, M., Xia, K., Wang, Q., Xu, Z., Ren, T., & Zhang, Y. (2016). Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors. Advanced Materials (Deerfield Beach, Fla.), 28(31), 6640–6648. https://doi.org/10.1002/adma.201601572
  • Wang, N., Zha, A., & Wang, J. (2008). Study on the wicking property of polyester filament yarns. Fibers and Polymers, 9(1), 97–100. https://doi.org/10.1007/s12221-008-0016-2
  • Yu, D., Kang, G., Tian, W., Lin, L., & Wang, W. (2015). Preparation of conductive silk fabric with antibacterial properties by electroless silver plating. Applied Surface Science, 357, 1157–1162. https://doi.org/10.1016/j.apsusc.2015.09.074
  • Zhang, D., Toh, G. W., Lin, H., & Chen, Y. (2012). In situ synthesis of silver nanoparticles on silk fabric with PNP for antibacterial finishing. Journal of Materials Science, 47(15), 5721–5728. https://doi.org/10.1007/s10853-012-6462-7
  • Zhang, W., Ji, X., Wang, C., & Yin, Y. (2019). One-bath one-step low-temperature dyeing of polyester/cotton blended fabric with cationic dyes via β-cyclodextrin modification. Textile Research Journal, 89(9), 1699–1711. https://doi.org/10.1177/0040517518779249
  • Zheng, H., Wang, R., Wang, Q., Zhu, Y., & Xu Y. (2020). Preparation and properties of antibacterial silk fabric modified with oxidized chitosan. Fangzhi Xuebao/Journal of Textile Research, 41, 121–128.
  • Zhu, G., Fang, Y., Zhao, L., Wang, J., & Chen, W. (2018). Prediction of structural parameters and air permeability of cotton woven fabric. Textile Research Journal, 88(14), 1650–1659. https://doi.org/10.1177/0040517517705632

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.