204
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Efficient fog collector with superhydrophobic coated surface

, , , , , , & show all
Pages 1048-1058 | Received 27 Jan 2023, Accepted 21 Apr 2023, Published online: 09 May 2023

References

  • Amor, N., Noman, M. T., & Petru, M. (2021). Prediction of methylene blue removal by nano TiO2 using deep neural network. Polymers, 13(18), 3104. https://doi.org/10.3390/polym13183104
  • Amor, N., Noman, M. T., Petru, M., & Sebastian, N. (2022). Comfort evaluation of ZnO coated fabrics by artificial neural network assisted with golden eagle optimizer model. Scientific Reports, 12(1), 1–16. https://doi.org/10.1038/s41598-022-10406-6
  • Amrei, M. M., Venkateshan, D. G., D'Souza, N., Atulasimha, J., & Tafreshi, H. V. (2016). Novel approach to measuring the droplet detachment force from fibers. Langmuir: The ACS Journal of Surfaces and Colloids, 32(50), 13333–13339. https://doi.org/10.1021/acs.langmuir.6b03198
  • Andrews, H., Eccles, E., Schofield, W., & Badyal, J. (2011). Three-dimensional hierarchical structures for fog harvesting. Langmuir: The ACS Journal of Surfaces and Colloids, 27(7), 3798–3802. https://doi.org/10.1021/la2000014
  • Azad, M., Ellerbrok, D., Barthlott, W., & Koch, K. (2015). Fog collecting biomimetic surfaces: Influence of microstructure and wettability. Bioinspiration & Biomimetics, 10(1), 016004. https://doi.org/10.1088/1748-3190/10/1/016004
  • Azeem, M., Boughattas, A., Wiener, J., & Havelka, A. (2017). Mechanism of liquid water transport in fabrics; a review. Fibres and Textiles, 24(4), 58–65.
  • Azeem, M., Guérin, A., Dumais, T., Caminos, L., Goldstein, R. E., Pesci, A. I., de Dios Rivera, J., Torres, M. J., Wiener, J., Campos, J. L., & Dumais, J. (2020). Optimal design of multi-layer fog collectors. ACS Applied Materials & Interfaces, 12(6), 7736–7743. https://doi.org/10.1021/acsami.9b19727
  • Azeem, M., Javed, A., Morikawa, H., Noman, M. T., Khan, M. Q., Shahid, M., & Wiener, J. (2019). Hydrophilization of polyester textiles by nonthermal plasma. Autex Research Journal, 1, 1–8.
  • Azeem, M., Noman, M. T., Petru, M., Shahid, M., Khan, M. Q., & Wiener, J. (2022). Surface wettability of vertical harps for fog collection. Surfaces and Interfaces, 30, 101842. https://doi.org/10.1016/j.surfin.2022.101842
  • Azeem, M., Noman, M. T., Wiener, J., Petru, M., & Louda, P. (2020b). Structural design of efficient fog collectors: A review. Environmental Technology & Innovation, 20, 101169. https://doi.org/10.1016/j.eti.2020.101169
  • Balram, D., Lian, K.-Y., Sebastian, N., Al-Mubaddel, F. S., & Noman, M. T. (2022). A sensitive and economical electrochemical platform for detection of food additive tert-butylhydroquinone based on porous Co3O4 nanorods embellished chemically oxidized carbon black. Food Control, 136, 108844. https://doi.org/10.1016/j.foodcont.2022.108844
  • Cassie, A., & Baxter, S. (1944). Wettability of porous surfaces. Transactions of the Faraday Society, 40, 546–551. https://doi.org/10.1039/tf9444000546
  • Cruzat, D., & Jerez-Hanckes, C. (2018). Electrostatic fog water collection. Journal of Electrostatics, 96, 128–133. https://doi.org/10.1016/j.elstat.2018.10.009
  • Darband, G. B., Aliofkhazraei, M., Khorsand, S., Sokhanvar, S., & Kaboli, A. (2020). Science and engineering of superhydrophobic surfaces: Review of corrosion resistance, chemical and mechanical stability. Arabian Journal of Chemistry, 13(1), 1763–1802. https://doi.org/10.1016/j.arabjc.2018.01.013
  • de Dios Rivera, J. (2011). Aerodynamic collection efficiency of fog water collectors. Atmospheric Research, 102(3), 335–342. https://doi.org/10.1016/j.atmosres.2011.08.005
  • de Dios Rivera, J., & Lopez-Garcia, D. (2015). Mechanical characteristics of Raschel mesh and their application to the design of large fog collectors. Atmospheric Research, 151, 250–258. https://doi.org/10.1016/j.atmosres.2014.06.011
  • Demoz, B. B., Collett, J. L., & Daube, B. C. (1996). On the Caltech active strand cloudwater collectors. Atmospheric Research, 41(1), 47–62. https://doi.org/10.1016/0169-8095(95)00044-5
  • Guo, X., Liu, L., Zhuang, Z., Chen, X., Ni, M., Li, Y., Cui, Y., Zhan, P., Yuan, C., Ge, H., Wang, Z., & Chen, Y. (2015). A new strategy of lithography based on phase separation of polymer blends. Scientific Reports, 5(1), 1–12. https://doi.org/10.1038/srep15947
  • Holmes, R., de Dios Rivera, J., & de la Jara, E. (2015). Large fog collectors: New strategies for collection efficiency and structural response to wind pressure. Atmospheric Research, 151, 236–249. https://doi.org/10.1016/j.atmosres.2014.06.005
  • Jeevahan, J., Chandrasekaran, M., Britto Joseph, G., Durairaj, R., & Mageshwaran, G. (2018). Superhydrophobic surfaces: A review on fundamentals, applications, and challenges. Journal of Coatings Technology and Research, 15(2), 231–250. https://doi.org/10.1007/s11998-017-0011-x
  • Jiang, Y., Savarirayan, S., Yao, Y., & Park, K.-C. (2019). Fog collection on a superhydrophilic wire. Applied Physics Letters, 114(8), 083701. https://doi.org/10.1063/1.5087144
  • Khan, M. Z., Militky, J., Petru, M., Tomková, B., Ali, A., Javed, A., Azeem, M., & Křemenáková, D. (2021). Ultra-fast growth of ZnO nanorods on cotton fabrics and their self-cleaning and physiological comfort properties. Coatings, 11(11), 1309. https://doi.org/10.3390/coatings11111309
  • Klemm, O., Schemenauer, R. S., Lummerich, A., Cereceda, P., Marzol, V., Corell, D., van Heerden, J., Reinhard, D., Gherezghiher, T., Olivier, J., Osses, P., Sarsour, J., Frost, E., Estrela, M. J., Valiente, J. A., & Fessehaye, G. M. (2012). Fog as a fresh-water resource: Overview and perspectives. Ambio, 41(3), 221–234. https://doi.org/10.1007/s13280-012-0247-8
  • Kucera, L., Gajdosik, T., Gajdac, I., Mruzek, M., & Tomasikova, M. (2017). Simulation of real driving cycles of electric cars in laboratory conditions. Communications – Scientific Letters of the University of Zilina, 19(2A), 42–47. https://doi.org/10.26552/com.C.2017.2A.42-47
  • Kučera, Ľ., Patin, B., Gajdošík, T., Palenčár, R., Palenčár, J., & Ujlaky, M. (2020). Application of metrological approaches in the design of calibration equipment for verification of float level gauges. Measurement Science Review, 20(5), 230–235. https://doi.org/10.2478/msr-2020-0028
  • Labbé, R., & Duprat, C. (2019). Capturing aerosol droplets with fibers. Soft Matter, 15(35), 6946–6951. https://doi.org/10.1039/c9sm01205b
  • Nguyen, L. T., Bai, Z., Zhu, J., Gao, C., Liu, X., Wagaye, B. T., Li, J., Zhang, B., & Guo, J. (2021). Three-dimensional multilayer vertical filament meshes for enhancing efficiency in fog water harvesting. ACS Omega, 6(5), 3910–3920. https://doi.org/10.1021/acsomega.0c05776
  • Noman, M. T., Amor, N., Ali, A., Petrik, S., Coufal, R., Adach, K., & Fijalkowski, M. (2021). Aerogels for biomedical, energy and sensing applications. Gels, 7(4), 264. https://doi.org/10.3390/gels7040264
  • Park, K.-C., Chhatre, S. S., Srinivasan, S., Cohen, R. E., & McKinley, G. H. (2013). Optimal design of permeable fiber network structures for fog harvesting. Langmuir: The ACS Journal of Surfaces and Colloids, 29(43), 13269–13277. https://doi.org/10.1021/la402409f
  • Rajaram, M., Heng, X., Oza, M., & Luo, C. (2016). Enhancement of fog-collection efficiency of a Raschel mesh using surface coatings and local geometric changes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 508, 218–229. https://doi.org/10.1016/j.colsurfa.2016.08.034
  • Raux, P. S., Gravelle, S., & Dumais, J. (2020). Design of a unidirectional water valve in Tillandsia. Nature Communications, 11(1), 1–7. https://doi.org/10.1038/s41467-019-14236-5
  • Roth-Nebelsick, A., Ebner, M., Miranda, T., Gottschalk, V., Voigt, D., Gorb, S., Stegmaier, T., Sarsour, J., Linke, M., & Konrad, W. (2012). Leaf surface structures enable the endemic Namib desert grass Stipagrostis sabulicola to irrigate itself with fog water. Journal of the Royal Society, Interface, 9(73), 1965–1974. https://doi.org/10.1098/rsif.2011.0847
  • Schemenauer, R. S., & Cereceda, P. (1992). The quality of fog water collected for domestic and agricultural use in Chile. Journal of Applied Meteorology, 31(3), 275–290. https://doi.org/10.1175/1520-0450(1992)031<0275:TQOFWC>2.0.CO;2
  • Schemenauer, R. S., & Joe, P. I. (1989). The collection efficiency of a massive fog collector. Atmospheric Research, 24(1–4), 53–69. https://doi.org/10.1016/0169-8095(89)90036-7
  • Schunk, C., Trautwein, P., Hruschka, H., Frost, E., Dodson, L., Derhem, A., Bargach, J., & Menzel, A. (2018). Testing water yield, efficiency of different meshes and water quality with a novel fog collector for high wind speeds. Aerosol and Air Quality Research, 18(1), 240–253. https://doi.org/10.4209/aaqr.2016.12.0528
  • Sebastian, N., Yu, W.-C., Balram, D., Al-Mubaddel, F. S., & Noman, M. T. (2022). Nanomolar detection of food additive tert-butylhydroquinone in edible oils based on novel ternary metal oxide embedded β-cyclodextrin functionalized carbon black. Food Chemistry, 377, 131867. https://doi.org/10.1016/j.foodchem.2021.131867
  • Shanyengana, E., Sanderson, R., Seely, M., & Schemenauer, R. (2003). Testing greenhouse shade nets in collection of fog for water supply. Journal of Water Supply: Research and Technology-Aqua, 52(3), 237–241. https://doi.org/10.2166/aqua.2003.0023
  • Sharifvaghefi, S., & Kazerooni, H. (2021). Fog harvesting: Combination and comparison of different methods to maximize the collection efficiency. SN Applied Sciences, 3(4), 1–11. https://doi.org/10.1007/s42452-021-04518-3
  • Shen, H., Liu, J., Chen, Y., Zhang, J., Zhang, Z., Guan, N., Zhang, F., Huang, L., Zhao, D., Jin, Z., & Liu, X. (2020). Investigation on time stability of laser-textured patterned surfaces under different temperatures. Surface and Coatings Technology, 400, 126225. https://doi.org/10.1016/j.surfcoat.2020.126225
  • Shi, W., Anderson, M. J., Tulkoff, J. B., Kennedy, B. S., & Boreyko, J. B. (2018). Fog harvesting with harps. ACS Applied Materials & Interfaces, 10(14), 11979–11986. https://doi.org/10.1021/acsami.7b17488
  • Wang, J., Guo, Y., Pan, G., Li, Y., Zhang, Y., Yu, H., Zhao, M., Zhao, G., Tang, G., & Liu, Y. (2022). Hybrid wettability surfaces with hydrophobicity and hydrophilicity for fog harvesting. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 650, 129555. https://doi.org/10.1016/j.colsurfa.2022.129555
  • Xu, J., Wan, Y., Lian, Z., Hou, Y., Xu, J., & Yu, H. (2022). Bio-inspired slippery surfaces with a hierarchical groove structure for efficient fog collection at low temperature. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 643, 128722. https://doi.org/10.1016/j.colsurfa.2022.128722

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.