458
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Ultralight, mechanically robust, and flame-retardant ultrafine fibrous sponges for high-performance warmth retention

, , , , ORCID Icon, , & show all
Pages 1070-1078 | Received 27 Feb 2023, Accepted 30 Apr 2023, Published online: 12 May 2023

References

  • Baddam, Y., Ijaola, A. O., & Asmatulu, E. (2021). Fabrication of flame-retardant and superhydrophobic electrospun nanofibers. Surfaces and Interfaces, 23, 101017. https://doi.org/10.1016/j.surfin.2021.101017
  • Bonino, C. A., Efimenko, K., Jeong, S. I., Krebs, M. D., Alsberg, E., & Khan, S. A. (2012). Three-dimensional electrospun alginate nanofiber mats via tailored charge repulsions. Small (Weinheim an Der Bergstrasse, Germany), 8(12), 1928–1936. https://doi.org/10.1002/smll.201101791
  • Cai, L. L., Song, A. Y., Wu, P. L., Hsu, P. C., Peng, Y. C., Chen, J., Liu, C., Catrysse, P. B., Liu, Y. Y., Yang, A. K., Zhou, C. X., Zhou, C. Y., Fan, S. H., & Cui, Y. (2017). Warming up human body by nanoporous metallized polyethylene textile. Nature Communications, 8(1), 496. https://doi.org/10.1038/s41467-017-00614-4
  • Capstick, S. B., & Pidgeon, N. F. (2014). Public perception of cold weather events as evidence for and against climate change. Climatic Change, 122(4), 695–708. https://doi.org/10.1007/s10584-013-1003-1
  • Chen, X., Xu, Y., Zhang, W. X., Xu, K. L., Ke, Q. F., Jin, X. Y., & Huang, C. (2019). Online fabrication of ultralight, three-dimensional, and structurally stable ultrafine fibre assemblies with a double-porous feature. Nanoscale, 11(17), 8185–8195. https://doi.org/10.1039/C9NR01477B
  • Cholewinska, P., Michalak, M., Łuczycka, D., & Czyż, K. (2020). An effect of suint on sheep wool impedance and heat resistance values. Journal of Natural Fibers, 17(3), 382–388. https://doi.org/10.1080/15440478.2018.1494078
  • Cui, Y., Gong, H. X., Wang, Y. J., Li, D. W., & Bai, H. (2018). A thermally insulating textile inspired by polar bear hair. Advanced Materials, 30(14), 1706807. https://doi.org/10.1002/adma.201706807
  • Gao, Q., Gu, H. B., Zhao, P., Zhang, C. M., Cao, M. Y., Fu, J. Z., & He, Y. (2018). Fabrication of electrospun nanofibrous scaffolds with 3D controllable geometric shapes. Materials & Design, 157, 159–169. https://doi.org/10.1016/j.matdes.2018.07.042
  • Gao, Q., Lauster, T., Kopera, B. A. F., Retsch, M., Agarwal, S., & Greiner, A. (2022). Breathable and flexible dual‐sided nonwovens with adjustable infrared optical performances for smart textile. Advanced Functional Materials, 32(5), 2108808. https://doi.org/10.1002/adfm.202108808
  • Gao, J., Yu, W. D., & Pan, N. (2007). Structures and properties of the goose down as a material for thermal insulation. Textile Research Journal. 77, 617–626. https://doi.org/10.1177/0040517507079408
  • Gasparrini, A., Guo, Y. M., Hashizume, M., Lavigne, E., Zanobetti, A., Schwartz, J., Tobias, A., Tong, S., Rocklöv, J., Forsberg, B., Leone, M., De Sario, M., Bell, M. L., Guo, Y. L. L., Wu, C. F., Kan, H. D., Yi, S. M., de Sousa Zanotti Stagliorio Coelho, M., Saldiva, P. H. N., … Armstrong, B. (2015). Mortality risk attributable to high and low ambient temperature: A multicountry observational study. Lancet (London, England), 386(9991), 369–375. https://doi.org/10.1016/S0140-6736(14)62114-0
  • He, X. D., Zhang, W. C., Yi, D. Q., & Yang, R. J. (2016). Flame retardancy of ammonium polyphosphate-montmorillonite nanocompounds on epoxy resin. Journal of Fire Sciences. 34(3), 212–225. https://doi.org/10.1177/0734904116637213
  • Hong, S. G., & Kim, G. H. (2011). Fabrication of size-controlled three-dimensional structures consisting of electrohydrodynamically produced polycaprolactone micro/nanofibers. Applied Physics A, 103(4), 1009–1014. https://doi.org/10.1007/s00339-011-6381-5
  • Huang, Z., Li, S. H., Tsai, L. C., Jiang, T., Ma, N., & Tsai, F. C. (2022). Flame retardant polypropylene with a single molecule intumescent flame retardant based on chitosan. Materials Today Communications. 33, 104689. https://doi.org/10.1016/j.mtcomm.2022.104689
  • Hu, J. T., Gao, Q. H., Xu, L., Zhang, M. X., Xing, Z., Guo, X. J., Zhang, K., & Wu, G. Z. (2016). Significant improvement in thermal and UV resistances of UHMWPE fabric through in situ formation of polysiloxane-TiO2 hybrid layers. ACS Applied Materials & Interfaces, 8(35), 23311–23320. https://doi.org/10.1021/acsami.6b04914
  • Hu, F., Wu, S. Y., & Sun, Y. G. (2019). Hollow-structured materials for thermal insulation. Advanced Materials, 31(38), 1801001. https://doi.org/10.1002/adma.201801001
  • Hu, Z. A., Yan, S. Q., Li, X. F., You, R. C., Zhang, Q., & Kaplan, D. L. (2021). Natural silk nanofibril aerogels with distinctive filtration capacity and heat-retention performance. ACS Nano, 15(5), 8171–8183. https://doi.org/10.1021/acsnano.1c00346
  • Jiang, J., Li, Z. R., Wang, H. J., Wang, Y., Carlson, M. A., Teusink, M. J., MacEwan, M. R., Gu, L. X., & Xie, J. W. (2016). Expanded 3D nanofiber scaffolds: Cell penetration, neovascularization, and host response. Advanced Healthcare Materials, 5(23), 2993–3003. https://doi.org/10.1002/adhm.201600808
  • Kaplan, S., & Yilmaz, B. (2022). Thermal comfort performances of double-face knitted insulation fabrics. Fibers and Polymers, 23(2), 537–545. https://doi.org/10.1007/s12221-021-0045-7
  • Li, R., Deng, X., Liu, F., Yang, Y., Zhang, Y., Reddy, N., Liu, W. S., Qiu, Y. P., & Jiang, Q. R. (2020). Three-dimensional rope-like and cloud-like nanofibrous scaffolds facilitating in-depth cell infiltration developed using a highly conductive electrospinning system. Nanoscale, 12(32), 16690–16696. https://doi.org/10.1039/D0NR03071F
  • Liu, R. R., Hou, L. L., Yue, G. C., Li, H. K., Zhang, J. S., Liu, J., Miao, B. B., Wang, N., Bai, J., Cui, Z. M., Liu, T. X., & Zhao, Y. (2022). Progress of fabrication and applications of electrospun hierarchically porous nanofibers. Advanced Fiber Materials, 4(4), 604–630. https://doi.org/10.1007/s42765-022-00132-z
  • Liu, Q. X., Huang, J., Zhang, J. M., Hong, Y. B., Wan, Y., Wang, Q., Gong, M. L., Wu, Z. G., & Guo, C. F. (2018). Thermal, waterproof, breathable, and antibacterial cloth with a nanoporous structure. ACS Applied Materials & Interfaces, 10(2), 2026–2032. https://doi.org/10.1021/acsami.7b16422
  • Liu, Z. W., Lyu, J., Fang, D., & Zhang, X. T. (2019). Nanofibrous kevlar aerogel threads for thermal insulation in harsh environments. ACS Nano,.13(5), 5703–5711. https://doi.org/10.1021/acsnano.9b01094
  • Liu, H., Zhang, S. C., Liu, L. F., Yu, J. Y., & Ding, B. (2019). A fluffy dual‐network structured nanofiber/net filter enables high‐efficiency air filtration. Advanced Functional Materials, 29(39), 1904108. https://doi.org/10.1002/adfm.201904108
  • Li, W. B., Zhao, Y., & Wang, X. (2019). Effect of surface modification on the dynamic heat and mass transfer of wool fabrics. Journal of Thermal Biology, 85, 102416. https://doi.org/10.1016/j.jtherbio.2019.102416
  • Mao, Y. Y., Wang, D., Hu, J. L., & Fu, S. H. (2023). Mechanically flexible and flame retardant polyphenol-bridged casein/MXene composite for fire proofing repeatable contact/non-contact fire monitoring. Chemical Engineering Journal and the Biochemical Engineering Journal. 454, 140161. https://doi.org/10.1016/j.cej.2022.140161
  • Miao, L. P., Yan, Z. J., Wang, X. L., Zhong, Y. J., Yang, J. X., & Xu, D. H. (2022). A novel hierarchical dtructured calcium magnesium ammonium polyphosphate for high-performance slow-release fertilizer. Reactive and Functional Polymers. 181, 105413. https://doi.org/10.1016/j.reactfunctpolym.2022.105413
  • Naylor, G. R. S., Wilson, C. A., & Laing, R. M. (2017). Thermal and water vapor transport properties of selected lofty nonwoven products. Textile Research Journal. 87(12), 1413–1424. https://doi.org/10.1177/0040517516654104
  • Oh, K. W., Kim, D. K., & Kim, S. H. (2009). Ultra-porous flexible PET/aerogel blanket for sound absorption and thermal insulation. Fibers and Polymers, 10(5), 731–737. https://doi.org/10.1007/s12221-010-0731-3
  • Song, W., Chen, L., Seta, J., Markel, D. C., Yu, X. W., & Ren, W. P. (2017). Corona discharge: A novel approach to fabricate three-dimensional electrospun nanofibers for bone tissue engineering. ACS Biomaterials Science & Engineering, 3(6), 1146–1153. https://doi.org/10.1021/acsbiomaterials.7b00061
  • Vahabi, H., Wu, H., Saeb, M. R., Koo, J. H., & Ramakrishna, S. (2021). Electrospinning for developing flame retardant polymer materials: Current status and future perspectives. Polymer, 217, 123466. https://doi.org/10.1016/j.polymer.2021.123466
  • Wang, K., Fu, C. Y., Wang, R., Tao, G. M., & Xia, Z. G. (2021). High-resilience cotton base yarn for anti-wrinkle and durable heat-insulation fabric. Composites Part B: Engineering, 212, 108663. https://doi.org/10.1016/j.compositesb.2021.108663
  • Wang, S., Liu, C., Wang, F., Yin, X., Yu, J. Y., Zhang, S. C., & Ding, B. (2022). Recent advances in ultrafine fibrous materials for effective warmth retention. Advanced Fiber Materials, https://doi.org/10.1007/s42765-022-00209-9
  • Wang, D., Li, D. W., Zhao, M., Xu, Y., & Wei, Q. F. (2018). Multifunctional wearable smart device based on conductive reduced graphene oxide/polyester fabric. Applied Surface Science. 454, 218–226. https://doi.org/10.1016/j.apsusc.2018.05.127
  • Wang, Z. Q., Wan, Y. P., Zheng, X. H., Yang, H. W., Wang, P., & Li, C. L. (2021). Enhancing the radiative heating performance of down fibers by layer-by-layer self-assembly. Journal of Cleaner Production, 298, 126760. https://doi.org/10.1016/j.jclepro.2021.126760
  • Wu, H. Y., Cai, H., Zhang, S. C., Yu, J. Y., & Ding, B. (2022). Ultralight, superelastic, and washable nanofibrous sponges with rigid-flexible coupling architecture enable reusable warmth retention. Nano Letters, 22(2), 830–837. https://doi.org/10.1021/acs.nanolett.1c04571
  • Wu, H. Y., Li, Y. Y., Zhao, L., Wang, S., Tian, Y. C., Si, Y., Yu, J. Y., & Ding, B. (2020). Stretchable and superelastic fibrous sponges tailored by “stiff-soft” bicomponent electrospun fibers for warmth retention. ACS Applied Materials & Interfaces, 12(24), 27562–27571. https://doi.org/10.1021/acsami.0c05333
  • Wu, H. Y., Zhao, L., Zhang, S. C., Si, Y., Yu, J. Y., & Ding, B. (2021). Ultralight and mechanically robust fibrous sponges tailored by semi-interpenetrating polymer networks for warmth retention. ACS Applied Materials & Interfaces, 13(15), 18165–18174. https://doi.org/10.1021/acsami.1c03658
  • Xiong, X. M., Yang, T., Mishra, R., & Militky, J. (2016). Transport properties of aerogel-based nanofibrous nonwoven fabrics. Fibers and Polymers, 17(10), 1709–1714. https://doi.org/10.1007/s12221-016-6745-8
  • Xu, J., Niu, Y. J., Xie, Z. P., Liang, F., Guo, F. H., & Wu, J. J. (2023). Synergistic flame retardant effect of carbon nanohorns and ammonium polyphosphate as a novel flame retardant system for cotton fabrics. Chemical Engineering Journal and the Biochemical Engineering Journal. 451, 138566. https://doi.org/10.1016/j.cej.2022.138566
  • Xue, J. J., Wu, T., Dai, Y. Q., & Xia, Y. N. (2019). Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chemical Reviews, 119(8), 5298–5415. https://doi.org/10.1021/acs.chemrev.8b00593
  • Yang, S., Li, M. S., & Shen, X. J. (2018). Fractal approach to structure and thermal property of down fiber assembly. Journal of Natural Fibers, 15(6), 853–859. https://doi.org/10.1080/15440478.2017.1376300
  • Zhang, S. C., Chen, K., Yu, J. Y., & Ding, B. (2015). Model derivation and validation for 2D polymeric nanonets: Origin, evolution, and regulation. Polymer, 74, 182–192. https://doi.org/10.1016/j.polymer.2015.08.002
  • Zhang, R. H., Gong, X. B., Wang, S., Tian, Y. C., Liu, Y. T., Zhang, S. C., Yu, J. Y., & Ding, B. (2021). Superelastic and fire-retardant nano-/microfibrous sponges for high-efficiency warmth retention. ACS Applied Materials & Interfaces, 13(48), 58027–58035. https://doi.org/10.1021/acsami.1c19850
  • Zhang, S. C., Liu, H., Tang, N., Ge, J. L., Yu, J. Y., & Ding, B. (2019). Direct electronetting of high-performance membranes based on self-assembled 2D nanoarchitectured networks. Nature Communications, 10(1), 1458. https://doi.org/10.1038/s41467-019-09444-y
  • Zhuo, T. T., Xin, B. J., Chen, Z. M., Xu, Y. Q., Zhou, X., & Yu, J. (2021). Enhanced thermal insulation properties of pi nanofiber membranes achieved by doping with SiO2 nanoparticles. European Polymer Journal. 153, 110489. https://doi.org/10.1016/j.eurpolymj.2021.110489
  • Zong, D. D., Cao, L. T., Yin, X., Si, Y., Zhang, S. C., Yu, J. Y., & Ding, B. (2021). Flexible ceramic nanofibrous sponges with hierarchically entangled graphene networks enable noise absorption. Nature Communications, 12(1), 6599. https://doi.org/10.1038/s41467-021-26890-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.