323
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Ultralight and antibacterial fibrous sponges with interlaced crimped-fiber architecture for high-efficiency warmth retention

, , , , , , , & show all
Pages 1083-1092 | Received 07 Mar 2023, Accepted 08 May 2023, Published online: 01 Jun 2023

References

  • Abu Elella, M. H., Goda, E. S., Yoon, K. R., Hong, S. E., Morsy, M. S., Sadak, R. A., & Gamal, H. (2021). Novel vapor polymerization for integrating flame retardant textile with multifunctional properties. Composites Communications, 24, 100614. https://doi.org/10.1016/j.coco.2020.100614
  • Cao, L., Shan, H., Zong, D., Yu, X., Yin, X., Si, Y., Yu, J., & Ding, B. (2022). Fire-resistant and hierarchically structured elastic ceramic nanofibrous aerogels for efficient low-frequency noise reduction. Nano Letters, 22(4), 1609–1617. https://doi.org/10.1021/acs.nanolett.1c04532
  • Chen, X., Xu, Y., Zhang, W., Xu, K., Ke, Q., Jin, X., & Huang, C. (2019). Online fabrication of ultralight, three-dimensional, and structurally stable ultrafine fibre assemblies with a double-porous feature. Nanoscale, 11(17), 8185–8195. https://doi.org/10.1039/c9nr01477b
  • Chen, Y. J., Dong, X. T., Shafiq, M., Myles, G., Radacsi, N., & Mo, X. M. (2022). Recent advancements on three-dimensional electrospun nanofiber scaffolds for tissue engineering. Advanced Fiber Materials, 4(5), 959–986. https://doi.org/10.1007/s42765-022-00170-7
  • Deus, F. P., & Ouanounou, A. (2022). Chlorhexidine in dentistry: Pharmacology, uses, and adverse effects. International Dental Journal, 72(3), 269–277. https://doi.org/10.1016/j.identj.2022.01.005
  • Dong, Y., Zheng, Y., Zhang, K., Yao, Y., Wang, L., Li, X., Yu, J., & Ding, B. (2020). Electrospun nanofibrous materials for wound healing. Advanced Fiber Materials, 2(4), 212–227. https://doi.org/10.1007/s42765-020-00034-y
  • Gong, X. B., Yin, X., Wang, F., Liu, X. Y., Yu, J. Y., Zhang, S. C., & Ding, B. (2023). Electrospun nanofibrous membranes: A versatile medium for waterproof and breathable application. Small, 19(2), e2205067. https://doi.org/10.1002/smll.202205067
  • Hu, F., Wu, S. Y., & Sun, Y. G. (2019). Hollow-structured materials for thermal insulation. Advanced Materials, 31(38), 1801001. https://doi.org/10.1002/adma.201801001
  • Huang, Z. M., Zhang, Y. Z., Kotaki, M., & Ramakrishna, S. (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 63(15), 2223–2253. https://doi.org/10.1016/S0266-3538(03)00178-7
  • Jia, L. C., Xu, L., Ren, F., Ren, P. G., Yan, D. X., & Li, Z. M. (2019). Stretchable and durable conductive fabric for ultrahigh performance electromagnetic interference shielding. Carbon, 144, 101–108. https://doi.org/10.1016/j.carbon.2018.12.034
  • Kim, K., Luu, Y. K., Chang, C., Fang, D. F., Hsiao, B. S., Chu, B., & Hadjiargyrou, M. (2004). Incorporation and controlled release of a hydrophilic antibiotic using poly(lactide-co-glycolide)-based electrospun nanofibrous scaffolds. Journal of Controlled Release: Official Journal of the Controlled Release Society, 98(1), 47–56. https://doi.org/10.1016/j.jconrel.2004.04.009
  • Li, M., Gan, F., Dong, J., Fang, Y., Zhao, X., & Zhang, Q. (2021). Facile preparation of continuous and porous polyimide aerogel fibers for multifunctional applications. ACS Applied Materials & Interfaces, 13(8), 10416–10427. https://doi.org/10.1021/acsami.0c21842
  • Li, S. Z., Wu, F., Zhang, X., Han, G. T., Si, Y., Yu, J. Y., & Ding, B. (2022). Flexible Al2O3/ZrO2 nanofibrous membranes for thermal insulation. CrystEngComm, 24(10), 1859–1865. https://doi.org/10.1039/D1CE01512E
  • Liao, X., Dulle, M., de Souza E Silva, J. M., Wehrspohn, R. B., Agarwal, S., Förster, S., Hou, H., Smith, P., & Greiner, A. (2019). High strength in combination with high toughness in robust and sustainable polymeric materials. Science (New York, N.Y.), 366(6471), 1376–1379. +. https://doi.org/10.1126/science.aay9033
  • Liu, C., Wang, S., Wang, N., Yu, J., Liu, Y. T., & Ding, B. (2022). From 1D nanofibers to 3D nanofibrous aerogels: A marvellous evolution of electrospun SiO2 nanofibers for emerging applications. Nano-Micro Letters, 14(1) https://doi.org/10.1007/s40820-022-00937-y
  • Liu, L., Xu, W. H., Ding, Y. C., Agarwal, S., Greiner, A., & Duan, G. G. (2020). A review of smart electrospun fibers toward textiles. Composites Communications, 22, 100506. https://doi.org/10.1016/j.coco.2020.100506
  • Liu, Q., Huang, J., Zhang, J., Hong, Y., Wan, Y., Wang, Q., Gong, M., Wu, Z., & Guo, C. F. (2018). Thermal, waterproof, breathable, and antibacterial cloth with a nanoporous structure. ACS Applied Materials & Interfaces, 10(2), 2026–2032. https://doi.org/10.1021/acsami.7b16422
  • Liu, S. Q., & Reneker, D. H. (2019). Droplet-jet shape parameters predict electrospun polymer nanofiber diameter. Polymer, 168, 155–158. https://doi.org/10.1016/j.polymer.2019.01.082
  • Manikandan, S., Divyabharathi, M., Tomas, K., Pavel, P., & David, L. (2018). Production of poly (epsilon-caprolactone) antimicrobial nanofibers by needleless alternating current electrospinning [Paper presentation].6th International Conference on Recent Advances in Materials, Minerals and Environment (RAMM), Malaysia. (Vol. 17, pp. 1100–1104) https://doi.org/10.1016/j.matpr.2019.06.526
  • Omenetto, F. G., & Kaplan, D. L. (2010). New opportunities for an ancient material. Science (New York, N.Y.), 329(5991), 528–531. https://doi.org/10.1126/science.1188936
  • Qin, X. H., & Xin, D. P. (2010). The study on the air volume fraction of electrospun nanofiber nonwoven mats. Fibers and Polymers, 11(4), 632–637. https://doi.org/10.1007/s12221-010-0632-7
  • Rieger, K. A., Birch, N. P., & Schiffman, J. D. (2013). Designing electrospun nanofiber mats to promote wound healing - a review. Journal of Materials Chemistry. B, 1(36), 4531–4541. https://doi.org/10.1039/c3tb20795a
  • Song, K., Gao, A., Cheng, X., & Xie, K. (2015). Preparation of the superhydrophobic nano-hybrid membrane containing carbon nanotube based on chitosan and its antibacterial activity. Carbohydrate Polymers, 130, 381–387. https://doi.org/10.1016/j.carbpol.2015.05.023
  • Tang, N., Si, Y., Yu, J. Y., & Ding, B. (2020). Leaf vein-inspired microfiltration membrane based on ultrathin nanonetworks. Environmental Science: Nano, 7(9), 2644–2653. https://doi.org/10.1039/D0EN00644K
  • Tian, L., Qiu, H., Sun, S., & Lin, H. (2016). Emergency cardiovascular hospitalization risk attributable to cold temperatures in Hong Kong. Circulation. Cardiovascular Quality and Outcomes, 9(2), 135–142. https://doi.org/10.1161/circoutcomes.115.002410
  • Wang, C., Cao, H., Jia, L., Liu, W., & Liu, P. (2022). Characterization of antibacterial aerogel based on epsilon-poly-L-lysine/nanocellulose by using citric acid as crosslinker. Carbohydrate Polymers, 291, 119568. https://doi.org/10.1016/j.carbpol.2022.119568
  • Wang, D., Mhatre, S., Chen, J., Shi, X., Yang, H., Cheng, W., Yue, Y., Han, G., & Rojas, O. J. (2023). Composites based on electrospun fibers modified with cellulose nanocrystals and SiO2 for selective oil/water separation. Carbohydrate Polymers, 299, 120119. https://doi.org/10.1016/j.carbpol.2022.120119
  • Wang, F., Si, Y., Yu, J. Y., & Ding, B. (2021). Tailoring nanonets-engineered superflexible nanofibrous aerogels with hierarchical cage-like architecture enables renewable antimicrobial air filtration. Advanced Functional Materials, 31(49), 2107223. https://doi.org/10.1002/adfm.202107223
  • Wang, S., Liu, C., Wang, F., Yin, X., Yu, J. Y., Zhang, S. C., & Ding, B. (2022). Recent advances in ultrafine fibrous materials for effective warmth retention. Advanced Fiber Materials, 1–21. https://doi.org/10.1007/s42765-022-00209-9
  • Wicklein, B., Kocjan, A., Salazar-Alvarez, G., Carosio, F., Camino, G., Antonietti, M., & Bergstrom, L. (2015). Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nature Nanotechnology, 10(3), 277–283. https://doi.org/10.1038/nnano.2014.248
  • Wu, F., Qiang, S., Zhang, X., Wang, F., Yin, X., Liu, L., Yu, J., Liu, Y. ‐T., & Ding, B. (2022). The rising of flexible and elastic ceramic fiber materials: Fundamental concept, design principle, and toughening mechanism. Advanced Functional Materials, 32(45), 2207130. https://doi.org/10.1002/adfm.202207130
  • Wu, H. Y., Cai, H., Zhang, S. C., Yu, J. Y., & Ding, B. (2022). Ultralight, superelastic, and washable nanofibrous sponges with rigid-flexible coupling architecture enable reusable warmth retention. Nano Letters, 22(2), 830–837. https://doi.org/10.1021/acs.nanolett.1c04571
  • Wu, H., Li, Y., Zhao, L., Wang, S., Tian, Y., Si, Y., Yu, J., & Ding, B. (2020). Stretchable and superelastic fibrous sponges tailored by "stiff-soft" bicomponent electrospun fibers for warmth retention. ACS Applied Materials & Interfaces, 12(24), 27562–27571. https://doi.org/10.1021/acsami.0c05333
  • Wu, H. Y., Zhao, L., Si, Y., Zhang, S. C., Yu, J. Y., & Ding, B. (2021). Ultralight and superelastic fibrous sponges with effective heat preservation and photo-thermal conversion for personal cold protection. Composites Communications, 25, 100766. https://doi.org/10.1016/j.coco.2021.100766
  • Wu, H. Y., Zhao, L., Zhang, S. C., Si, Y., Yu, J. Y., & Ding, B. (2021). Ultralight and mechanically robust fibrous sponges tailored by semi-interpenetrating polymer networks for warmth retention. ACS Applied Materials & Interfaces, 13(15), 18165–18174. https://doi.org/10.1021/acsami.1c03658
  • Wu, S. L., Nie, X. L., Wang, Z. H., Yu, Z. F., & Huang, F. L. (2023). Magnetron sputtering engineering of typha-like carbon nanofiber interlayer integrating brush filter and chemical adsorption for Li-S batteries. Carbon, 201, 285–294. https://doi.org/10.1016/j.carbon.2022.09.020
  • Xie, Y., Ma, Q., Yue, B., Chen, X., Jin, Y., Qi, H., Hu, Y., Yu, W., Dong, X., & Jiang, H. (2023). Triboelectric nanogenerator based on flexible Janus nanofiber membrane with simultaneous high charge generation and charge capturing abilities. Chemical Engineering Journal, 452, 139393. https://doi.org/10.1016/j.cej.2022.139393
  • Xu, H., Wang, S., Gong, X., Yang, M., Liu, X., Zhang, S., Yu, J., & Ding, B. (2022). Superelastic, ultralight, and washable electrospun fibrous sponges for effective warmth retention. Composites Communications, 29, 101024. https://doi.org/10.1016/j.coco.2021.101024
  • Xue, J. J., Wu, T., Dai, Y. Q., & Xia, Y. N. (2019). Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chemical Reviews, 119(8), 5298–5415. https://doi.org/10.1021/acs.chemrev.8b00593
  • Yao, T., Chen, H., Wang, R., Rivero, R., Wang, F., Kessels, L., Agten, S. M., Hackeng, T. M., Wolfs, T. G. A. M., Fan, D., Baker, M. B., & Moroni, L. (2023). Thiol-ene conjugation of a VEGF peptide to electrospun scaffolds for potential applications in angiogenesis. Bioactive Materials, 20, 306–317. https://doi.org/10.1016/j.bioactmat.2022.05.029
  • Zhang, M. C., Wang, C. Y., Wang, H. M., Jian, M. Q., Hao, X. Y., & Zhang, Y. Y. (2017). Carbonized cotton fabric for high-performance wearable strain sensors. Advanced Functional Materials, 27(2), 1604795. https://doi.org/10.1002/adfm.201604795
  • Zhang, R., Gong, X., Wang, S., Tian, Y., Liu, Y., Zhang, S., Yu, J., & Ding, B. (2021). Superelastic and fire-retardant nano-/microfibrous sponges for high-efficiency warmth retention. ACS Applied Materials & Interfaces, 13(48), 58027–58035. https://doi.org/10.1021/acsami.1c19850
  • Zhang, S. C., Liu, H., Tang, N., Zhou, S., Yu, J. Y., Li, B. Y., & Ding, B. (2020). Spider-web-inspired PM0.3 filters based on self-sustained electrostatic nanostructured networks. Advanced Materials, 32(49), 2006930. https://doi.org/10.1002/adma.202006930
  • Zhang, S. C., Liu, H., Yu, J. Y., Li, B. Y., & Ding, B. (2020). Multi-functional flexible 2D carbon nanostructured networks. Nature Communications, 11(1) https://doi.org/10.1038/s41467-020-18977-6
  • Zhao, L., Wu, H. Y., Jiao, W. L., Yin, X., Si, Y., Yu, J. Y., & Ding, B. (2021). Superelastic, lightweight, and flame-retardant 3D fibrous sponge fabricated by one-step electrospinning for heat retention. Composites Communications, 25, 100681. https://doi.org/10.1016/j.coco.2021.100681
  • Zheng, Z. B., Wu, H. Y., Si, Y., Jia, Y. T., & Ding, B. (2021). Stretchable and resilient fibrous sponges tailored by interlocking double-network for warmth retention. Composites Communications, 27, 100788. https://doi.org/10.1016/j.coco.2021.100788
  • Zhou, W., Yu, X., Cao, L., Yang, M., Li, Y., Si, Y., Yu, J., & Ding, B. (2020). Green and ethanol-resistant polyurethane nanofibrous membranes based on an ethanol solvent for waterproof and breathable textiles. Advanced Sustainable Systems, 4(9), 2000105. https://doi.org/10.1002/adsu.202000105
  • Zhu, J., Lv, S., Yang, T., Huang, T., Yu, H., Zhang, Q., & Zhu, M. (2020). Facile and green strategy for designing ultralight, flexible, and multifunctional PVA nanofiber-based aerogels. Advanced Sustainable Systems, 4(4), 1900141. https://doi.org/10.1002/adsu.201900141
  • Zong, D. D., Cao, L. T., Li, Y., Yin, X., Si, Y., Yu, J. Y., & Ding, B. (2020). Interlocked dual-network and superelastic electrospun fibrous sponges for efficient low-frequency noise absorption. Small Structures, 1(2), 2000004. https://doi.org/10.1002/sstr.202000004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.