202
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Energy efficient industrial and textile waste for the fabrication of cementitious composites: a review

, ORCID Icon, , ORCID Icon, &
Received 26 Feb 2023, Accepted 28 May 2023, Published online: 05 Jun 2023

References

  • Abd El-Aleem, S., Abd-El-Aziz, M., Heikal, M., & El Didamony, H. (2005). Effect of cement kiln dust substitution on chemical and physical properties and compressive strength of Portland and slag cements. Arabian Journal for Science and Engineering, 30(2B), 263–273.
  • Abd Rashid, A. F., & Yusoff, S. (2015). A review of life cycle assessment method for building industry. Renewable and Sustainable Energy Reviews, 45, 244–248. https://doi.org/10.1016/j.rser.2015.01.043
  • Abdel-Gawwad, H., & Khalil, K. A. (2018). Application of thermal treatment on cement kiln dust and feldspar to create one-part geopolymer cement. Construction and Building Materials, 187, 231–237. https://doi.org/10.1016/j.conbuildmat.2018.07.161
  • Abdel-Gawwad, H. A., Heikal, M., Mohammed, M. S., Abd El-Aleem, S., Hassan, H. S., García, S. V., & Alomayri, T. (2019). Sustainable disposal of cement kiln dust in the production of cementitious materials. Journal of Cleaner Production, 232, 1218–1229. https://doi.org/10.1016/j.jclepro.2019.06.016
  • Abdel-Gawwad, H. A., Sanad, S. A., & Mohammed, M. S. (2020). A clean approach through sustainable utilization of cement kiln dust, hazardous lead-bearing, and sewage sludges in the production of lightweight bricks. Journal of Cleaner Production, 273, 123129. https://doi.org/10.1016/j.jclepro.2020.123129
  • Abdollahnejad, Z., Kheradmand, M., & Pacheco-Torgal, F. (2017). Short-term compressive strength of fly ash and waste glass alkali-activated cement-based binder mortars with two biopolymers. Journal of Materials in Civil Engineering, 29(7), 04017045. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001920
  • Aghaee, K., & Foroughi, M. (2013). Mechanical properties of lightweight concrete partition with a core of textile waste. Advances in Civil Engineering, 2013, 1–7. https://doi.org/10.1155/2013/482310
  • Ahmad, J., Kontoleon, K. J., Majdi, A., Naqash, M. T., Deifalla, A. F., Ben Kahla, N., Isleem, H. F., & Qaidi, S. M. (2022). A comprehensive review on the ground granulated blast furnace slag (GGBS) in concrete production. Sustainability, 14(14), 8783. https://doi.org/10.3390/su14148783
  • Ahmaruzzaman, M. (2010). A review on the utilization of fly ash. Progress in Energy and Combustion Science, 36(3), 327–363. https://doi.org/10.1016/j.pecs.2009.11.003
  • Aimin, X., & Sarkar, S. L. (1991). Microstructural study of gypsum activated fly ash hydration in cement paste. Cement and Concrete Research, 21(6), 1137–1147. https://doi.org/10.1016/0008-8846(91)90074-R
  • Al-Harthy, A. S., Taha, R., & Al-Maamary, F. (2003). Effect of cement kiln dust (CKD) on mortar and concrete mixtures. Construction and Building Materials, 17(5), 353–360. https://doi.org/10.1016/S0950-0618(02)00120-4
  • Ali, M. A., & Yang, H.-S. (2011). Utilization of cement kiln dust in industry cement bricks. Geosystem Engineering, 14(1), 29–34. https://doi.org/10.1080/12269328.2011.10541327
  • Amor, N., Noman, M. T., & Petru, M. (2021a). Classification of textile polymer composites: Recent trends and challenges. Polymers, 13(16), 2592. https://doi.org/10.3390/polym13162592
  • Amor, N., Noman, M. T., & Petru, M. (2021b). Prediction of methylene blue removal by nano TiO2 using deep neural network. Polymers, 13(18), 3104. https://doi.org/10.3390/polym13183104
  • Amor, N., Noman, M. T., Petru, M., Mahmood, A., & Ismail, A. (2021). Neural network-crow search model for the prediction of functional properties of nano TiO2 coated cotton composites. Scientific Reports, 11(1), 1–13. https://doi.org/10.1038/s41598-021-93108-9
  • Amor, N., Noman, M. T., Petru, M., & Sebastian, N. (2022). Comfort evaluation of ZnO coated fabrics by artificial neural network assisted with golden eagle optimizer model. Scientific Reports, 12(1), 1–16. https://doi.org/10.1038/s41598-022-10406-6
  • Aspiras, F., & Manalo, J. (1995). Utilization of textile waste cuttings as building material. Journal of Materials Processing Technology, 48(1-4), 379–384. https://doi.org/10.1016/0924-0136(94)01672-N
  • Aydın, S., & Baradan, B. (2012). Mechanical and microstructural properties of heat cured alkali-activated slag mortars. Materials & Design, 35, 374–383. https://doi.org/10.1016/j.matdes.2011.10.005
  • Babu, K. G., & Kumar, V. S. R. (2000). Efficiency of GGBS in concrete. Cement and Concrete Research, 30(7), 1031–1036.
  • Balram, D., Lian, K.-Y., Sebastian, N., Al-Mubaddel, F. S., & Noman, M. T. (2022). Bi-functional renewable biopolymer wrapped CNFs/Ag doped spinel cobalt oxide as a sensitive platform for highly toxic nitroaromatic compound detection and degradation. Chemosphere, 291(Pt 2), 132998. https://doi.org/10.1016/j.chemosphere.2021.132998
  • Barbosa, R., Dias, D., Lapa, N., Lopes, H., & Mendes, B. (2013). Chemical and ecotoxicological properties of size fractionated biomass ashes. Fuel Processing Technology, 109, 124–132. https://doi.org/10.1016/j.fuproc.2012.09.048
  • Barbosa, R., Lapa, N., Dias, D., & Mendes, B. (2013). Concretes containing biomass ashes: Mechanical, chemical, and ecotoxic performances. Construction and Building Materials, 48, 457–463. https://doi.org/10.1016/j.conbuildmat.2013.07.031
  • Barnett, S., Soutsos, M., Millard, S., & Bungey, J. (2006). Strength development of mortars containing ground granulated blast-furnace slag: Effect of curing temperature and determination of apparent activation energies. Cement and Concrete Research, 36(3), 434–440. https://doi.org/10.1016/j.cemconres.2005.11.002
  • Behera, P., Noman, M. T., & Petrů, M. (2020). Enhanced mechanical properties of eucalyptus-basalt-based hybrid-reinforced cement composites. Polymers, 12(12), 2837. https://doi.org/10.3390/polym12122837
  • Belviso, C. (2018). State-of-the-art applications of fly ash from coal and biomass: A focus on zeolite synthesis processes and issues. Progress in Energy and Combustion Science, 65, 109–135. https://doi.org/10.1016/j.pecs.2017.10.004
  • Benin, S., Kannan, S., Bright, R. J., & Moses, A. J. (2020). A review on mechanical characterization of polymer matrix composites & its effects reinforced with various natural fibres. Materials Today: Proceedings, 33, 798–805. https://doi.org/10.1016/j.matpr.2020.06.259
  • Bhanja, S., & Sengupta, B. (2005). Influence of silica fume on the tensile strength of concrete. Cement and Concrete Research, 35(4), 743–747. https://doi.org/10.1016/j.cemconres.2004.05.024
  • Blissett, R., & Rowson, N. (2012). A review of the multi-component utilisation of coal fly ash. Fuel, 97, 1–23. https://doi.org/10.1016/j.fuel.2012.03.024
  • Broda, J., Przybyło, S., Gawłowski, A., Grzybowska-Pietras, J., Sarna, E., Rom, M., & Laszczak, R. (2019). Utilisation of textile wastes for the production of geotextiles designed for erosion protection. The Journal of the Textile Institute, 110(3), 435–444. https://doi.org/10.1080/00405000.2018.1486684
  • Cândido, L., Kindlein, W., Demori, R., Carli, L., Mauler, R., & Oliveira, R. (2011). The recycling cycle of materials as a design project tool. Journal of Cleaner Production, 19(13), 1438–1445. https://doi.org/10.1016/j.jclepro.2011.04.017
  • Carević, I., Baričević, A., Štirmer, N., & Bajto, J. Š. (2020). Correlation between physical and chemical properties of wood biomass ash and cement composites performances. Construction and Building Materials, 256, 119450. https://doi.org/10.1016/j.conbuildmat.2020.119450
  • Carević, I., Serdar, M., Štirmer, N., & Ukrainczyk, N. (2019). Preliminary screening of wood biomass ashes for partial resources replacements in cementitious materials. Journal of Cleaner Production, 229, 1045–1064. https://doi.org/10.1016/j.jclepro.2019.04.321
  • Cheah, C. B., & Ramli, M. (2012). Mechanical strength, durability and drying shrinkage of structural mortar containing HCWA as partial replacement of cement. Construction and Building Materials, 30, 320–329. https://doi.org/10.1016/j.conbuildmat.2011.12.009
  • Cheah, C. B., Tan, L. E., & Ramli, M. (2021). Recent advances in slag-based binder and chemical activators derived from industrial by-products–A review. Construction and Building Materials, 272, 121657. https://doi.org/10.1016/j.conbuildmat.2020.121657
  • Chen, Y., Li, X., & Du, H. (2023). A review of high temperature properties of cement based composites: Effects of nano materials. Materials Today Communications, 35, 105954. https://doi.org/10.1016/j.mtcomm.2023.105954
  • Chidiac, S., & Panesar, D. (2008). Evolution of mechanical properties of concrete containing ground granulated blast furnace slag and effects on the scaling resistance test at 28 days. Cement and Concrete Composites, 30(2), 63–71. https://doi.org/10.1016/j.cemconcomp.2007.09.003
  • Cho, Y. K., Jung, S. H., & Choi, Y. C. (2019). Effects of chemical composition of fly ash on compressive strength of fly ash cement mortar. Construction and Building Materials, 204, 255–264. https://doi.org/10.1016/j.conbuildmat.2019.01.208
  • Chowdhury, S., Maniar, A., & Suganya, O. (2015). Strength development in concrete with wood ash blended cement and use of soft computing models to predict strength parameters. Journal of Advanced Research, 6(6), 907–913. https://doi.org/10.1016/j.jare.2014.08.006
  • Çiçek, T., & Çinçin, Y. (2015). Use of fly ash in production of light-weight building bricks. Construction and Building Materials, 94, 521–527. https://doi.org/10.1016/j.conbuildmat.2015.07.029
  • Claramunt, J., Fernández-Carrasco, L. J., Ventura, H., & Ardanuy, M. (2016). Natural fiber nonwoven reinforced cement composites as sustainable materials for building envelopes. Construction and Building Materials, 115, 230–239. https://doi.org/10.1016/j.conbuildmat.2016.04.044
  • Czapik, P., Zapała-Sławeta, J., Owsiak, Z., & Stępień, P. (2020). Hydration of cement by-pass dust. Construction and Building Materials, 231, 117139. https://doi.org/10.1016/j.conbuildmat.2019.117139
  • Diamond, S., & Sahu, S. (2006). Densified silica fume: Particle sizes and dispersion in concrete. Materials and Structures, 39(9), 849–859. https://doi.org/10.1617/s11527-006-9087-y
  • Dickson, A. N., Barry, J. N., McDonnell, K. A., & Dowling, D. P. (2017). Fabrication of continuous carbon, glass and Kevlar fibre reinforced polymer composites using additive manufacturing. Additive Manufacturing, 16, 146–152. https://doi.org/10.1016/j.addma.2017.06.004
  • Domina, T., & Koch, K. (1997). The textile waste lifecycle. Clothing and Textiles Research Journal, 15(2), 96–102. https://doi.org/10.1177/0887302X9701500204
  • dos Santos, R. F., Oliveira, F. R., Rocha, M. R. d., Velez, R. A., & Steffens, F. (2022). Reinforced cementitious composite using viscose rayon fiber from textile industry waste. Journal of Engineered Fibers and Fabrics, 17, 155892502211157. https://doi.org/10.1177/15589250221115722
  • Durdziński, P. T., Dunant, C. F., Haha, M. B., & Scrivener, K. L. (2015). A new quantification method based on SEM-EDS to assess fly ash composition and study the reaction of its individual components in hydrating cement paste. Cement and Concrete Research, 73, 111–122. https://doi.org/10.1016/j.cemconres.2015.02.008
  • Duxson, P., Provis, J. L., Lukey, G. C., Mallicoat, S. W., Kriven, W. M., & Van Deventer, J. S. (2005). Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 269(1-3), 47–58. https://doi.org/10.1016/j.colsurfa.2005.06.060
  • Dyer, T., Halliday, J., & Dhir, R. (1999). An investigation of the hydration chemistry of ternary blends containing cement kiln dust. Journal of Materials Science, 34(20), 4975–4983. https://doi.org/10.1023/A:1004715806829
  • Echeverria, C. A., Handoko, W., Pahlevani, F., & Sahajwalla, V. (2019). Cascading use of textile waste for the advancement of fibre reinforced composites for building applications. Journal of Cleaner Production, 208, 1524–1536. https://doi.org/10.1016/j.jclepro.2018.10.227
  • El-Attar, M. M., Sadek, D. M., & Salah, A. M. (2017). Recycling of high volumes of cement kiln dust in bricks industry. Journal of Cleaner Production, 143, 506–515. https://doi.org/10.1016/j.jclepro.2016.12.082
  • Fernández-Jiménez, A., & Palomo, A. (2003). Characterisation of fly ashes. Potential reactivity as alkaline cements⋆. Fuel, 82(18), 2259–2265. https://doi.org/10.1016/S0016-2361(03)00194-7
  • Garcia-Lodeiro, I., Taboada, V. C., Fernández-Jiménez, A., & Palomo, Á. (2017). Recycling industrial by-products in hybrid cements: Mechanical and microstructure characterization. Waste and Biomass Valorization, 8(5), 1433–1440. https://doi.org/10.1007/s12649-016-9679-x
  • Gartner, E. (2004). Industrially interesting approaches to “low-CO2” cements. Cement and Concrete Research, 34(9), 1489–1498. https://doi.org/10.1016/j.cemconres.2004.01.021
  • Giesekam, J., Barrett, J., Taylor, P., & Owen, A. (2014). The greenhouse gas emissions and mitigation options for materials used in UK construction. Energy and Buildings, 78, 202–214. https://doi.org/10.1016/j.enbuild.2014.04.035
  • Gudonis, E., Timinskas, E., Gribniak, V., Kaklauskas, G., Arnautov, A. K., & Tamulėnas, V. (2014). FRP reinforcement for concrete structures: State-of-the-art review of application and design. Engineering Structures and Technologies, 5(4), 147–158. https://doi.org/10.3846/2029882X.2014.889274
  • Hemalatha, T., Mapa, M., George, N., & Sasmal, S. (2016). Physico-chemical and mechanical characterization of high volume fly ash incorporated and engineered cement system towards developing greener cement. Journal of Cleaner Production, 125, 268–281. https://doi.org/10.1016/j.jclepro.2016.03.118
  • Hemalatha, T., & Ramaswamy, A. (2017). A review on fly ash characteristics–Towards promoting high volume utilization in developing sustainable concrete. Journal of Cleaner Production, 147, 546–559. https://doi.org/10.1016/j.jclepro.2017.01.114
  • Hoet, P. H., Brüske-Hohlfeld, I., & Salata, O. V. (2004). Nanoparticles–known and unknown health risks. Journal of Nanobiotechnology, 2(1), 12. https://doi.org/10.1186/1477-3155-2-12
  • Hu, C., Battampara, P., Guna, V., & Reddy, N. (2022). Effect of alkali treatment on the structure and properties of natural cellulose fibers from areca cathechu shells. Journal of Natural Fibers, 19(14), 9754–9764. https://doi.org/10.1080/15440478.2021.1993405
  • Huntzinger, D. N., & Eatmon, T. D. (2009). A life-cycle assessment of Portland cement manufacturing: Comparing the traditional process with alternative technologies. Journal of Cleaner Production, 17(7), 668–675. https://doi.org/10.1016/j.jclepro.2008.04.007
  • Ilangovan, M., Guna, V., Hu, C., Takemura, A., Leman, Z., & Reddy, N. (2021). Dehulled coffee husk-based biocomposites for green building materials. Journal of Thermoplastic Composite Materials, 34(12), 1623–1638. https://doi.org/10.1177/0892705719876308
  • Ilangovan, M., Navada, A. P., Guna, V., Touchaleaume, F., Saulnier, B., Grohens, Y., & Reddy, N. (2022). Hybrid biocomposites with high thermal and noise insulation from discarded wool, poultry feathers, and their blends. Construction and Building Materials, 345, 128324. https://doi.org/10.1016/j.conbuildmat.2022.128324
  • Imam, A., Kumar, V., & Srivastava, V. (2018). Review study towards effect of Silica Fume on the fresh and hardened properties of concrete. Advances in Concrete Construction, 6(2), 145–157.
  • Jamshaid, H., Mishra, R., Militký, J., & Noman, M. T. (2018). Interfacial performance and durability of textile reinforced concrete. The Journal of the Textile Institute, 109(7), 879–890. https://doi.org/10.1080/00405000.2017.1381394
  • Jamshaid, H., Mishra, R., Militky, J., Pechociakova, M., & Noman, M. T. (2016). Mechanical, thermal and interfacial properties of green composites from basalt and hybrid woven fabrics. Fibers and Polymers, 17(10), 1675–1686. https://doi.org/10.1007/s12221-016-6563-z
  • Jiang, S., Shao, H., Cao, G., Li, H., Xu, W., Li, J., Fang, J., & Wang, X. (2020). Waste cotton fabric derived porous carbon containing Fe3O4/NiS nanoparticles for electrocatalytic oxygen evolution. Journal of Materials Science & Technology, 59, 92–99. https://doi.org/10.1016/j.jmst.2020.04.055
  • Johari, M. M., Brooks, J., Kabir, S., & Rivard, P. (2011). Influence of supplementary cementitious materials on engineering properties of high strength concrete. Construction and Building Materials, 25(5), 2639–2648. https://doi.org/10.1016/j.conbuildmat.2010.12.013
  • Kamble, Z., & Behera, B. K. (2020). Mechanical properties and water absorption characteristics of composites reinforced with cotton fibres recovered from textile waste. Journal of Engineered Fibers and Fabrics, 15, 155892502090153. https://doi.org/10.1177/1558925020901530
  • Khan, M. I., & Siddique, R. (2011). Utilization of silica fume in concrete: Review of durability properties. Resources, Conservation and Recycling, 57, 30–35. https://doi.org/10.1016/j.resconrec.2011.09.016
  • Khatib, J., & Hibbert, J. (2005). Selected engineering properties of concrete incorporating slag and metakaolin. Construction and Building Materials, 19(6), 460–472. https://doi.org/10.1016/j.conbuildmat.2004.07.017
  • Kocak, Y., & Nas, S. (2014). The effect of using fly ash on the strength and hydration characteristics of blended cements. Construction and Building Materials, 73, 25–32. https://doi.org/10.1016/j.conbuildmat.2014.09.048
  • Kucera, L., Gajdosik, T., Gajdac, I., Mruzek, M., & Tomasikova, M. (2017). Simulation of real driving cycles of electric cars in laboratory conditions. Communications - Scientific Letters of the University of Zilina, 19(2A), 42–47. https://doi.org/10.26552/com.C.2017.2A.42-47
  • Kučera, Ľ., Patin, B., Gajdošík, T., Palenčár, R., Palenčár, J., & Ujlaky, M. (2020). Application of metrological approaches in the design of calibration equipment for verification of float level gauges. Measurement Science Review, 20(5), 230–235. https://doi.org/10.2478/msr-2020-0028
  • Kvočka, D., Lešek, A., Knez, F., Ducman, V., Panizza, M., Tsoutis, C., & Bernardi, A. (2020). Life cycle assessment of prefabricated geopolymeric façade cladding panels made from large fractions of recycled construction and demolition waste. Materials, 13(18), 3931. https://doi.org/10.3390/ma13183931
  • Lessard, J.-M., Omran, A., Tagnit-Hamou, A., & Gagne, R. (2017). Feasibility of using biomass fly and bottom ashes to produce RCC and PCC. Journal of Materials in Civil Engineering, 29(4), 04016267. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001796
  • Ma, H., Guna, V., Raju, T., Murthy, A. N., & Reddy, N. (2023). Converting flax processing waste into value added biocomposites. Industrial Crops and Products, 195, 116434. https://doi.org/10.1016/j.indcrop.2023.116434
  • Mahmood, A., Noman, M. T., Pechočiaková, M., Amor, N., Petrů, M., Abdelkader, M., Militký, J., Sozcu, S., & Hassan, S. Z. U. (2021). Geopolymers and fiber-reinforced concrete composites in civil engineering. Polymers, 13(13), 2099. https://doi.org/10.3390/polym13132099
  • Maslehuddin, M., Al-Amoudi, O., Rahman, M., Ali, M., & Barry, M. (2009). Properties of cement kiln dust concrete. Construction and Building Materials, 23(6), 2357–2361. https://doi.org/10.1016/j.conbuildmat.2008.11.002
  • Maslehuddin, M., Al-Amoudi, O., Shameem, M., Rehman, M., & Ibrahim, M. (2008). Usage of cement kiln dust in cement products–research review and preliminary investigations. Construction and Building Materials, 22(12), 2369–2375. https://doi.org/10.1016/j.conbuildmat.2007.09.005
  • Mastali, M., & Dalvand, A. (2016). Use of silica fume and recycled steel fibers in self-compacting concrete (SCC). Construction and Building Materials, 125, 196–209. https://doi.org/10.1016/j.conbuildmat.2016.08.046
  • Meddah, M. S., & Bencheikh, M. (2009). Properties of concrete reinforced with different kinds of industrial waste fibre materials. Construction and Building Materials, 23(10), 3196–3205. https://doi.org/10.1016/j.conbuildmat.2009.06.017
  • Mehta, P. K. (2009). Global concrete industry sustainability. Concrete International, 31(2), 45–48.
  • Merli, R., Preziosi, M., Acampora, A., Lucchetti, M. C., & Petrucci, E. (2020). Recycled fibers in reinforced concrete: A systematic literature review. Journal of Cleaner Production, 248, 119207. https://doi.org/10.1016/j.jclepro.2019.119207
  • Mohammadhosseini, H., Awal, A. A., & Yatim, J. B. M. (2017). The impact resistance and mechanical properties of concrete reinforced with waste polypropylene carpet fibres. Construction and Building Materials, 143(143), 147–157. https://doi.org/10.1016/j.conbuildmat.2017.03.109
  • Mohammadhosseini, H., Tahir, M. M., Sam, A. R. M., Lim, N. H. A. S., & Samadi, M. (2018). Enhanced performance for aggressive environments of green concrete composites reinforced with waste carpet fibers and palm oil fuel ash. Journal of Cleaner Production, 185, 252–265. https://doi.org/10.1016/j.jclepro.2018.03.051
  • Mohammadhosseini, H., Yatim, J. M., Sam, A. R. M., & Awal, A. A. (2017). Durability performance of green concrete composites containing waste carpet fibers and palm oil fuel ash. Journal of Cleaner Production, 144, 448–458. https://doi.org/10.1016/j.jclepro.2016.12.151
  • Naik, T. R., Kraus, R. N., & Siddique, R. (2003). Controlled low-strength materials containing mixtures of coal ash and new pozzolanic material. Materials Journal, 100(3), 208–215.
  • Noman, M. T., Amor, N., & Petru, M. (2022). Synthesis and applications of ZnO nanostructures (ZONSs): A review. Critical Reviews in Solid State and Materials Sciences, 47(2), 99–141. https://doi.org/10.1080/10408436.2021.1886041
  • Noman, M. T., Ashraf, M. A., & Ali, A. (2019). Synthesis and applications of nano-TiO2: A review. Environmental Science and Pollution Research International, 26(4), 3262–3291. https://doi.org/10.1007/s11356-018-3884-z
  • Noman, M. T., & Petru, M. (2020). Effect of sonication and nano TiO2 on thermophysiological comfort properties of woven fabrics. ACS Omega, 5(20), 11481–11490. https://doi.org/10.1021/acsomega.0c00572
  • Noman, M. T., & Petrů, M. (2020). Functional properties of sonochemically synthesized zinc oxide nanoparticles and cotton composites. Nanomaterials, 10(9), 1661. https://doi.org/10.3390/nano10091661
  • Noman, M. T., Petru, M., Amor, N., & Louda, P. (2020). Thermophysiological comfort of zinc oxide nanoparticles coated woven fabrics. Scientific Reports, 10(1), 1–12. https://doi.org/10.1038/s41598-020-78305-2
  • Noman, M. T., Petru, M., Amor, N., Yang, T., & Mansoor, T. (2020). Thermophysiological comfort of sonochemically synthesized nano TiO2 coated woven fabrics. Scientific Reports, 10(1), 1–12. https://doi.org/10.1038/s41598-020-74357-6
  • Noman, M. T., Wiener, J., Saskova, J., Ashraf, M. A., Vikova, M., Jamshaid, H., & Kejzlar, P. (2018). In-situ development of highly photocatalytic multifunctional nanocomposites by ultrasonic acoustic method. Ultrasonics Sonochemistry, 40(Pt A), 41–56. https://doi.org/10.1016/j.ultsonch.2017.06.026
  • Nwankwo, C. O., Bamigboye, G. O., Davies, I. E., & Michaels, T. A. (2020). High volume Portland cement replacement: A review. Construction and Building Materials, 260, 120445. https://doi.org/10.1016/j.conbuildmat.2020.120445
  • Oner, A., & Akyuz, S. (2007). An experimental study on optimum usage of GGBS for the compressive strength of concrete. Cement and Concrete Composites, 29(6), 505–514. https://doi.org/10.1016/j.cemconcomp.2007.01.001
  • Özbay, E., Erdemir, M., & Durmuş, H. İ. (2016). Utilization and efficiency of ground granulated blast furnace slag on concrete properties–A review. Construction and Building Materials, 105, 423–434. https://doi.org/10.1016/j.conbuildmat.2015.12.153
  • Pal, S., Mukherjee, A., & Pathak, S. (2003). Investigation of hydraulic activity of ground granulated blast furnace slag in concrete. Cement and Concrete Research, 33(9), 1481–1486. https://doi.org/10.1016/S0008-8846(03)00062-0
  • Panias, D., Giannopoulou, I. P., & Perraki, T. (2007). Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 301(1-3), 246–254. https://doi.org/10.1016/j.colsurfa.2006.12.064
  • Papadakis, V. G. (1999). Effect of fly ash on Portland cement systems: Part I. Low-calcium fly ash. Cement and Concrete Research, 29(11), 1727–1736. https://doi.org/10.1016/S0008-8846(99)00153-2
  • Papadakis, V. G. (2000). Effect of fly ash on Portland cement systems: Part II. High-calcium fly ash. Cement and Concrete Research, 30(10), 1647–1654. https://doi.org/10.1016/S0008-8846(00)00388-4
  • Peña-Pichardo, P., Martínez-Barrera, G., Martínez-López, M., Ureña-Núñez, F., & dos Reis, J. M. L. (2018). Recovery of cotton fibers from waste Blue-Jeans and its use in polyester concrete. Construction and Building Materials, 177, 409–416. https://doi.org/10.1016/j.conbuildmat.2018.05.137
  • Pitman, R. M. (2006). Wood ash use in forestry–A review of the environmental impacts. Forestry: An International Journal of Forest Research, 79(5), 563–588. https://doi.org/10.1093/forestry/cpl041
  • Qin, Y., Zhang, X., & Chai, J. (2019). Damage performance and compressive behavior of early-age green concrete with recycled nylon fiber fabric under an axial load. Construction and Building Materials, 209, 105–114. https://doi.org/10.1016/j.conbuildmat.2019.03.094
  • Quader, M. A., Ahmed, S., Ghazilla, R. A. R., Ahmed, S., & Dahari, M. (2015). A comprehensive review on energy efficient CO2 breakthrough technologies for sustainable green iron and steel manufacturing. Renewable and Sustainable Energy Reviews, 50, 594–614. https://doi.org/10.1016/j.rser.2015.05.026
  • Rahman, S. S., Siddiqua, S., & Cherian, C. (2022). Sustainable applications of textile waste fiber in the construction and geotechnical industries: A retrospect. Cleaner Engineering and Technology, 6, 100420. https://doi.org/10.1016/j.clet.2022.100420
  • Rajamma, R., Ball, R. J., Tarelho, L. A., Allen, G. C., Labrincha, J. A., & Ferreira, V. M. (2009). Characterisation and use of biomass fly ash in cement-based materials. Journal of Hazardous Materials, 172(2-3), 1049–1060. https://doi.org/10.1016/j.jhazmat.2009.07.109
  • Rashad, A. M. (2015). A brief on high-volume Class F fly ash as cement replacement-A guide for Civil Engineer. International Journal of Sustainable Built Environment, 4(2), 278–306. https://doi.org/10.1016/j.ijsbe.2015.10.002
  • Rivera, F., Martínez, P., Castro, J., & López, M. (2015). Massive volume fly-ash concrete: A more sustainable material with fly ash replacing cement and aggregates. Cement and Concrete Composites, 63, 104–112. https://doi.org/10.1016/j.cemconcomp.2015.08.001
  • Sadrolodabaee, P., Claramunt, J., Ardanuy, M., & de la Fuente, A. (2021a). Characterization of a textile waste nonwoven fabric reinforced cement composite for non-structural building components. Construction and Building Materials, 276, 122179. https://doi.org/10.1016/j.conbuildmat.2020.122179
  • Sadrolodabaee, P., Claramunt, J., Ardanuy, M., & de la Fuente, A. (2021b). Mechanical and durability characterization of a new textile waste micro-fiber reinforced cement composite for building applications. Case Studies in Construction Materials, 14, e00492. https://doi.org/10.1016/j.cscm.2021.e00492
  • Sadrolodabaee, P., Claramunt, J., Ardanuy, M., & de la Fuente, A. (2021c). A textile waste fiber-reinforced cement composite: Comparison between short random fiber and textile reinforcement. Materials, 14(13), 3742. https://doi.org/10.3390/ma14133742
  • Sarıdemir, M. (2013). Effect of silica fume and ground pumice on compressive strength and modulus of elasticity of high strength concrete. Construction and Building Materials, 49, 484–489. https://doi.org/10.1016/j.conbuildmat.2013.08.091
  • Sebastian, N., Yu, W.-C., Balram, D., Al-Mubaddel, F. S., & Noman, M. T. (2022). Nanomolar detection of food additive tert-butylhydroquinone in edible oils based on novel ternary metal oxide embedded β-cyclodextrin functionalized carbon black. Food Chemistry, 377, 131867. https://doi.org/10.1016/j.foodchem.2021.131867
  • Sebastian, N., Yu, W.-C., Balram, D., Chen, Q., Shiue, A., Noman, M., & Amor, N. (2023). Porous hematite embedded C and Fe codoped graphitic carbon nitride for electrochemical detection of pineal gland hormone melatonin. Materials Today Chemistry, 29, 101406. https://doi.org/10.1016/j.mtchem.2023.101406
  • Sebastian, N., Yu, W.-C., Balram, D., Noman, M. T., & Amor, N. (2022). Silver doped dodecahedral metal-organic framework anchored RGO nanosheets for nanomolar quantification of priority toxic pollutant in aquatic environment. Journal of Alloys and Compounds, 922, 166180. https://doi.org/10.1016/j.jallcom.2022.166180
  • Seo, M., Lee, S.-Y., Lee, C., & Cho, S.-S. (2019). Recycling of cement kiln dust as a raw material for cement. Environments, 6(10), 113. https://doi.org/10.3390/environments6100113
  • Shoaib, M., Balaha, M., & Abdel-Rahman, A. (2000). Influence of cement kiln dust substitution on the mechanical properties of concrete. Cement and Concrete Research, 30(3), 371–377. https://doi.org/10.1016/S0008-8846(99)00262-8
  • Siddique, R. (2012). Utilization of wood ash in concrete manufacturing. Resources, Conservation and Recycling, 67, 27–33. https://doi.org/10.1016/j.resconrec.2012.07.004
  • Siddique, R. (2014). Utilization of industrial by-products in concrete. Procedia Engineering, 95, 335–347. https://doi.org/10.1016/j.proeng.2014.12.192
  • Siddique, R., & Bennacer, R. (2012). Use of iron and steel industry by-product (GGBS) in cement paste and mortar. Resources, Conservation and Recycling, 69, 29–34. https://doi.org/10.1016/j.resconrec.2012.09.002
  • Siddique, R., Rajor, A., & Kunal. (2012). Use of cement kiln dust in cement concrete and its leachate characteristics. Resources, Conservation and Recycling, 61, 59–68., https://doi.org/10.1016/j.resconrec.2012.01.006
  • Subramanian, K., Sarkar, M. K., Wang, H., Qin, Z.-H., Chopra, S. S., Jin, M., Kumar, V., Chen, C., Tsang, C.-W., & Lin, C. S. K. (2022). An overview of cotton and polyester, and their blended waste textile valorisation to value-added products: A circular economy approach–research trends, opportunities and challenges. Critical Reviews in Environmental Science and Technology, 52(21), 3921–3942. https://doi.org/10.1080/10643389.2021.1966254
  • Suresh, D., & Nagaraju, K. (2015). Ground granulated blast slag (GGBS) in concrete–A review. IOSR Journal of Mechanical and Civil Engineering, 12(4), 76–82.
  • Tanyildizi, H., & Coskun, A. (2008). Performance of lightweight concrete with silica fume after high temperature. Construction and Building Materials, 22(10), 2124–2129. https://doi.org/10.1016/j.conbuildmat.2007.07.017
  • Tarelho, L., Teixeira, E., Silva, D., Modolo, R., Labrincha, J., & Rocha, F. (2015). Characteristics of distinct ash flows in a biomass thermal power plant with bubbling fluidised bed combustor. Energy, 90, 387–402. https://doi.org/10.1016/j.energy.2015.07.036
  • Teixeira, E. R., Camões, A., & Branco, F. (2019). Valorisation of wood fly ash on concrete. Resources, Conservation and Recycling, 145, 292–310. https://doi.org/10.1016/j.resconrec.2019.02.028
  • Tran, N. P., Gunasekara, C., Law, D. W., Houshyar, S., Setunge, S., & Cwirzen, A. (2022). Comprehensive review on sustainable fiber reinforced concrete incorporating recycled textile waste. Journal of Sustainable Cement-Based Materials, 11(1), 28–42. https://doi.org/10.1080/21650373.2021.1875273
  • Udoeyo, F. F., Inyang, H., Young, D. T., & Oparadu, E. E. (2006). Potential of wood waste ash as an additive in concrete. Journal of Materials in Civil Engineering, 18(4), 605–611. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:4(605)
  • Ütebay, B., Çelik, P., & Çay, A. (2019). Effects of cotton textile waste properties on recycled fibre quality. Journal of Cleaner Production, 222, 29–35. https://doi.org/10.1016/j.jclepro.2019.03.033
  • Van Jaarsveld, J., Van Deventer, J., & Lukey, G. (2003). The characterisation of source materials in fly ash-based geopolymers. Materials Letters, 57(7), 1272–1280. https://doi.org/10.1016/S0167-577X(02)00971-0
  • Viswanath, B., & Kim, S. (2017). Influence of nanotoxicity on human health and environment: The alternative strategies. Reviews of Environmental Contamination and Toxicology, 242, 61–104. https://doi.org/10.1007/398_2016_12
  • Wang, K., Konsta-Gdoutos, M. S., & Shah, S. P. (2002). Hydration, rheology, and strength of ordinary Portland cement (OPC)-cement kiln dust (CKD)-slag binders. Materials Journal, 99(2), 173–179.
  • Wang, S., Miller, A., Llamazos, E., Fonseca, F., & Baxter, L. (2008). Biomass fly ash in concrete: Mixture proportioning and mechanical properties. Fuel, 87(3), 365–371. https://doi.org/10.1016/j.fuel.2007.05.026
  • Wang, Y. (1999). Utilization of recycled carpet waste fibers for reinforcement of concrete and soil. Polymer-Plastics Technology and Engineering, 38(3), 533–546. https://doi.org/10.1080/03602559909351598
  • Wei, J., & Meyer, C. (2014). Improving degradation resistance of sisal fiber in concrete through fiber surface treatment. Applied Surface Science, 289, 511–523. https://doi.org/10.1016/j.apsusc.2013.11.024
  • Wi, K., Lee, H.-S., Lim, S., Song, H., Hussin, M. W., & Ismail, M. A. (2018). Use of an agricultural by-product, nano sized palm oil fuel ash as a supplementary cementitious material. Construction and Building Materials, 183, 139–149. https://doi.org/10.1016/j.conbuildmat.2018.06.156
  • Wu, X., Zhou, J., Kang, T., Wang, F., Ding, X., & Wang, S. (2019). Laboratory investigation on the shrinkage cracking of waste fiber-reinforced recycled aggregate concrete. Materials, 12(8), 1196. https://doi.org/10.3390/ma12081196
  • Xuan, W., Chen, X., Yang, G., Dai, F., & Chen, Y. (2018). Impact behavior and microstructure of cement mortar incorporating waste carpet fibers after exposure to high temperatures. Journal of Cleaner Production, 187, 222–236. https://doi.org/10.1016/j.jclepro.2018.03.183
  • Yao, Z., Ji, X., Sarker, P., Tang, J., Ge, L., Xia, M., & Xi, Y. (2015). A comprehensive review on the applications of coal fly ash. Earth-Science Reviews, 141, 105–121. https://doi.org/10.1016/j.earscirev.2014.11.016
  • Yue, Y., Wang, J. J., & Bai, Y. (2018). Tracing the status of silica fume in cementitious materials with Raman microscope. Construction and Building Materials, 159, 610–616. https://doi.org/10.1016/j.conbuildmat.2017.11.015
  • Zareei, S. A., Ameri, F., Bahrami, N., Shoaei, P., Musaeei, H. R., & Nurian, F. (2019). Green high strength concrete containing recycled waste ceramic aggregates and waste carpet fibers: Mechanical, durability, and microstructural properties. Journal of Building Engineering, 26, 100914. https://doi.org/10.1016/j.jobe.2019.100914

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.