209
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Development of camouflage fabric based on continuous thermochromic and electrothermal material

, &
Pages 1350-1361 | Received 13 Oct 2022, Accepted 16 Jun 2023, Published online: 26 Jun 2023

References

  • Bai, Y., Li, H., Gan, S., Li, Y., Liu, H., & Chen, L. (2018). Flexible heating fabrics with temperature perception based on fine copper wire and fusible interlining fabrics. Measurement, 122, 192–200. https://doi.org/10.1016/j.measurement.2018.03.021
  • Chen, A., & Liu, Q. (2021). Structural design and performance of woven electrothermal fabric based on silver-plated filament. AATCC Journal of Research, 8(2_suppl), 78–85. https://doi.org/10.14504/ajr.8.S2.16
  • Chen, A., Liu, Q., & Xue, L. Y. (2020). Color changing performances of multi-layer color changing paint coating fabric. Textile Dyeing and Finishing Journal, 42(10), 39–44.
  • Chen, S., Pang, Y., Wang, J., Gong, Y., Wang, R., Luan, X., & Li, X. (2022). Preparation and properties of green-yellow reversible electro-thermochromic fabric. Journal of Inorganic Materials, 37(9), 954–960. https://doi.org/10.15541/jim20210726
  • Claypole, A., Claypole, J., Bezodis, N., Kilduff, L., Gethin, D., & Claypole, T. (2022). Printed nanocarbon heaters for stretchable sport and leisure garments. Materials, 15(2), 573. https://doi.org/10.3390/ma15020573
  • Ge, F., Fei, L., Zhang, J., & Wang, C. (2020). The Electrical-triggered high contrast and reversible color-changing Janus fabric based on double side coating. ACS Applied Materials & Interfaces, 12(19), 21854–21862. https://doi.org/10.1021/acsami.0c03194
  • Geng, X., Li, W., Wang, Y., Lu, J., Wang, J., Wang, N., Li, J., & Zhang, X. (2018). Reversible thermochromic microencapsulated phase change materials for thermal energy storage application in thermal protective clothing. Applied Energy, 217, 281–294. https://doi.org/10.1016/j.apenergy.2018.02.150
  • Gou, M., Guo, G., Zhang, J., Men, K., Song, J., Luo, F., Zhao, X., Qian, Z., & Wei, Y. (2010). Time-temperature chromatic sensor based on polydiacetylene (PDA) vesicle and amphiphilic copolymer. Sensors and Actuators, 150(1), 406–411. https://doi.org/10.1016/j.snb.2010.06.041
  • Guan, Y., Zhang, L., Wang, D., West, J. L., & Fu, S. (2018). Preparation of thermochromic liquid crystal microcapsules for intelligent functional fiber. Materials & Design, 147, 28–34. https://doi.org/10.1016/j.matdes.2018.03.030
  • Hao, D. D., Xu, B., & Cai, Z. S. (2018). Polypyrrole coated knitted fabric for robust wearable sensor and heater. Journal of Materials Science: Materials in Electronics, 29(11), 9218–9226. https://doi.org/10.1007/s10854-018-8950-2
  • Hsu, P.-C., Liu, X., Liu, C., Xie, X., Lee, H. R., Welch, A. J., Zhao, T., & Cui, Y. (2015). Personal thermal management by metallic nanowire-coated textile. Nano Letters, 15(1), 365–371. https://doi.org/10.1021/nl5036572
  • Kaepagam, K. R., & Saranya K S, G. J., et al. (2017). Development of smart clothing for military applications using thermochromic colorants. The Journal of the Textile Institute, 108(7), 1122–1127.
  • Lee, J-S., Jo, H., Choe, H-S., Lee, D-S., Jeong, H., Lee, H-R., Kweon, J-H., Lee, H., Shin Myong, R., & Nam, Y. (2022). Electro-thermal heating element with a nickel-plated carbon fabric for the leading edge of a wing-shaped composite application. Composite Structures, 289, 115510. https://doi.org/10.1016/j.compstruct.2022.115510
  • Lee, S., Jang, D., Chung, Y. S., & Lee, S. (2020). Cost-effective and highly efficient surface heating elements using high thermal conductive carbon fibers. Composites Part A: Applied Science and Manufacturing, 137, 105992. https://doi.org/10.1016/j.compositesa.2020.105992
  • Liu, H., Li, J., Chen, L., Liu, L., Li, Y., Li, X., Li, X., & Yang, H. (2016). Thermal-electronic behaviors investigation of knitted heating fabrics based on silver plating compound yarns. Textile Research Journal, 86(13), 1398–1412. https://doi.org/10.1177/0040517515612359
  • Lu, H. B., Yao, Y. T., & Lin, L. (2015). Temperature sensing and actuating capabilities of polymeric shape memory composite containing thermochromic particles. Pigment & Resin Technology, 44(4), 224–231. https://doi.org/10.1108/PRT-06-2014-0046
  • Nikolaev, D. V., Evseev, Z. I., Smagulova, S. A., & Antonova, I. V. (2021). Electrical properties of textiles treated with graphene oxide suspension. Materials, 14(8), 1999. https://doi.org/10.3390/ma14081999
  • Panák, O., Držková, M., Kaplanová, M., Novak, U., & Klanjšek Gunde, M. (2017). The relation between colour and structural changes in thermochromic systems comprising crystal violet lactone, bisphenol A, and tetradecanol. Dyes and Pigments, 136, 382–389. https://doi.org/10.1016/j.dyepig.2016.08.050
  • Philip, B., Jewell, E., Greenwood, P., & Weirman, C. (2016). Material and process optimization screen printing carbon graphite pastes for mass production of heating elements. Journal of Manufacturing Processes, 22, 185–191. https://doi.org/10.1016/j.jmapro.2016.03.001
  • Potuck, A., Meyers, S., Levitt, A., Beaudette, E., Xiao, H., Chu, C. C., & Park, H. (2016). Development of thermochromic pigment based sportswear for detection of physical exhaustion. Fashion Practice, 8(2), 279–295. https://doi.org/10.1080/17569370.2016.1216990
  • Shi, M., Lu, B., Li, X., Jin, Y., & Ge, M. (2021). Thermochromic luminescent fiber based on yellow thermochromic microcapsules: Preparation, properties, and potential application areas. Cellulose, 28(8), 5005–5018. https://doi.org/10.1007/s10570-021-03858-y
  • Sun, K. X., Su, L., & Long, H. R. (2019). Structural parameters affecting electrothermal properties of woolen knitted fabrics integrated with silver-coated yarns. Polymers, 11(10), 1709. https://doi.org/10.3390/polym11101709
  • Tozum, M. S., Aksoy, S. A., & Alkan, C. (2021). Manufacturing surface active shell and bisphenol A free thermochromic acrylic microcapsules for textile applications. International Journal of Energy Research, 45(5), 7018–7037. https://doi.org/10.1002/er.6287
  • Tozum, M. S., Aksoy, S. A., & Alkan, C. (2022). Development of reversibly color changing textile materials by applying some thermochromic microcapsules containing different color developers. The Journal of the Textile Institute, 113(10), 2159–2168. https://doi.org/10.1080/00405000.2021.1972645
  • Tugirumubano, A., Jeong, H., Kim, J. D., Kwac, L. K., & Kim, H. G. (2021). Reliability evaluation of the performance of non-woven carbon fiber fabric for heating element applications. Journal of Materials Research and Technology, 14, 2140–2149. https://doi.org/10.1016/j.jmrt.2021.07.111
  • Wang, Y., Ren, J., Ye, C., Pei, Y., & Ling, S. (2021). Thermochromic silks for temperature management and dynamic textile displays. Nano-Micro Letters, 13(1), 17. https://doi.org/10.1007/s40820-021-00591-w
  • Wu, B., Shi, L., Zhang, Q., & Wang, W.-J. (2017). Microencapsulation of 1-hexadecanol as a phase change material with reversible thermochromic properties. RSC Advances, 7(67), 42129–42137. https://doi.org/10.1039/C7RA06764J
  • Xie, J., Pan, W., Guo, Z., Jiao, S. S., & Ping Yang, L. (2019). In situ polymerization of polypyrrole on cotton fabrics as flexible electrothermal materials. Journal of Engineered Fibers and Fabrics, 14, 155892501982744. 1558925019827447. https://doi.org/10.1177/1558925019827447
  • Xu, F. P., & He, W. Y. (2015). The structure and properties of thermochromic polyvinyl alcohol fiber. Shanghai Textile Science & Technology, 43(10), 73–75.
  • Yan, X. X., Wang, L., & Qian, X. Y. (2020). Influence of the PVC of glass fiber powder on the properties of a thermochromic waterborne coating for Chinese Fir boards. Coatings, 10(6), 588. https://doi.org/10.3390/coatings10060588
  • Yang, M., Pan, J., Luo, L., Xu, A., Huang, J., Xia, Z., Cheng, D., Cai, G., & Wang, X. (2019). CNT/cotton composite yarn for electro-thermochromic textiles. Smart Materials and Structures, 28(8), 085003. https://doi.org/10.1088/1361-665X/ab21ef
  • Yi, S., Sun, S., Deng, Y., & Feng, S. (2015). Preparation of composite thermochromic and phase-change materials by the sol–gel method and its application in textiles. The Journal of the Textile Institute, 106(10), 1071–1077. https://doi.org/10.1080/00405000.2014.965501
  • Zhu, X., Liu, Y., Li, Z., & Wang, W. (2018). Thermochromic microcapsules with highly transparent shells obtained through in-situ polymerization of urea formaldehyde around thermochromic cores for smart wood coatings. Scientific Reports, 8(1), 4015. https://doi.org/10.1038/s41598-018-22445-z

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.