58
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Physical properties, morphology and crystallinity of Typha leaf fibers processed by different extraction treatments

ORCID Icon, ORCID Icon, &
Received 25 Jul 2022, Accepted 29 Jan 2024, Published online: 09 Feb 2024

References

  • Asyraf, M. R. M., Syamsir, A., Supian, A. B. M., Usman, F., Ilyas, R. A., Nurazzi, N. M., Norrrahim, M. N. F., Razman, M. R., Zakaria, S. Z. S., Sharma, S., Itam, Z., & Rashid, M. Z. A. (2022). Sugar palm fibre-reinforced polymer composites: influence of chemical treatments on its mechanical pro. Materials, 15(11), 3852. https://doi.org/10.3390/ma15113852
  • Ben Mlik, Y., Jaoudi, M., Khoffi, F., Slah, M., & Durand, B. (2020). Study the effect of chemical and enzymatic extraction methods on the kenaf fibers properties. Journal of Natural Fibers, 19(3), 1168–1177. https://doi.org/10.1080/15440478.2020.1837327
  • Boukhoulda, F. B., Makich, H., Nouari, M., Haddag, B., & Boukhoulda, A. (2017). Microstructural and mechanical characterizations of natural long alfa fibers obtained with different extractions processes. Journal of Natural Fibers, 14(6), 897–908. https://doi.org/10.1080/15440478.2017.1302384
  • Bourmaud, A., Morvan, C., Bouali, A., Placet, V., Perré, P., & Baley, C. (2013). Relationships between micro-fibrillar angle, mechanical properties and biochemical composition of flax fibers. Industrial Crops and Products. 44, 343–351. https://doi.org/10.1016/j.indcrop.2012.11.031
  • Cao, Y., Chan, F., Chui, Y.-H., & Xiao, H. (2012). Characterization of flax fibres modified by alkaline, enzyme, and steam-heat treatments. BioResources, 7(3), 4109–4121. https://doi.org/10.15376/biores.7.3.4109-4121
  • Célino, A., Fréour, S., Jacquemin, F., & Casari, P. (2013). The hygroscopic behavior of plant fibres: A review. Frontiers in Chemistry, 1, 43. https://doi.org/10.3389/fchem.2013.00043
  • Chakma, K. (2018). Extraction efficiency, quality and characterization of Typha latifolia L. fibres for textile applications [Master's thesis, University of Manitoba].
  • Christian, C., Mohamed, J., & Karama, E. B. (2015). Untreated and alkali treated fibers from Alfa stem: Effect of alkali treatment on structural, morphological and thermal features. Cellulose, 22, 1577–1589.
  • Coates, J. (2000). Interpretation of infrared spectra, a practical approach. In Encyclopedia of analytical chemistry (pp. 10815–10837). John Wiley & Sons Ltd.
  • Doumeng, M., Makhlouf, L., Berthet, F., Marsan, O., Delbé, K., Denape, J., & Chabert, F. (2021). A comparative study of the crystallinity of Polyetheretherketone by using density, DSC, XRD, and Raman spectroscopy techniques. Polymer Testing, Elsevier, 93, 106878. https://doi.org/10.1016/j.polymertesting.2020.106878
  • El Oudiani, A. (2010). Contribution à l’étude du comportement mécanique des fibres d’agave Americana L. [PhD thesis, Ecole Nationale des Ingénieurs de Monastir (ENIM)].
  • El Oudiani, A., Chaabouni, Y., Msahli, S., & Sakli, F. (2009). Physico-chemical characterisation and tensile mechanical properties of Agave americanaL. fibres. Journal of the Textile Institute, 100(5), 430–439. https://doi.org/10.1080/00405000701863350
  • El Oudiani, A., Chaabouni, Y., Msahli, S., & Sakli, F. (2011). Crystal transition from cellulose I to cellulose II in NaOH treated Agave americana L. fibre. Carbohydrate Polymers, 86(3), 1221–1229. https://doi.org/10.1016/j.carbpol.2011.06.037
  • Elenga, R. G., Dirras, G. F., Maniongui, J. G., Djemia, P., & Biget, M. P. (2009). On the microstructure and physical properties of untreated raffia textilis fiber. Composites: Part A, 40(4), 418–422. https://doi.org/10.1016/j.compositesa.2009.01.001
  • Gaye, A., Awa Sene, N., Balland, P., Sambou, V., & Gnin Papa, B. (2023). Extraction and physicomechanical characterisation of Typha Australis fibres: Sensitivity to a location in the plant. Journal of Natural Fibers, 20(1), 1–11. https://doi.org/10.1080/15440478.2022.2164106
  • Haq, U. N., Huraira, A., & Uddin, M. A. (2022). Physical characteristics of Typha elephantina Roxb. fiber (Hogla) for textile application. The Journal of the Textile Institute, 113(11), 2328–2334. https://doi.org/10.1080/00405000.2021.1981020
  • Hawley, M. C., Misra, M., & Sgriccia, N. (2008). Characterization of natural fiber surfaces and natural fiber composites. Composites: Part A, 39(10), 1632–1637. https://doi.org/10.1016/j.compositesa.2008.07.007
  • Hindeleh, A. M. (1980). Crystallinity, crystallite size, and physical properties of native egyptian cotton. Textile Research Journal, 50(11), 667–674. https://doi.org/10.1177/004051758005001106
  • Imed, B. M. (2010). Caractérisation et modification des fibres d’alfa en vue de leur utilisation en application textile [PhD thesis, University of Monastir].
  • Jiang, L., Du, P., & Wang, H. (2021). Seawater modification of lignocellulosic fibers: Comparison of rice husk and rice straw fibers. Materials Research Express, 8(3), 035102. https://doi.org/10.1088/2053-1591/abe8c4
  • Jiang, Y., & Loos, K. (2016). Enzymatic synthesis of biobased polyesters and polyamides. Polymers, 8(7), 243. https://doi.org/10.3390/polym8070243
  • Johnson, D. J., & Hindeleh, A. M. (1978). Crystallinity and crystallite size measurement in polyamide and polyester fibres. Polymer, 19(1), 27–32. https://doi.org/10.1016/0032-3861(78)90167-2
  • Joseph, K., Thomas, S., & Pavithran, C. (1996). Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites. Polymer, 37(23), 5139–5149. https://doi.org/10.1016/0032-3861(96)00144-9
  • Julien, R. (2006). Analyse de la diversité du bois de tension de 3 espèces d’angiospermes de forêt tropicale humide de Guyane Française [PhD thesis, UAG].
  • Kamal Moghaddam, M., & Karimi, E. (2022). Structural and physical characteristics of the yucca fiber. Journal of Industrial Textiles, 51(5_suppl), 8018S–8034S. https://doi.org/10.1177/1528083720960756
  • Kenned Jack, J., Sankaranarayanasamy, K., & Suresh Kumar, C. (2021). Chemical, biological, and nanoclay treatments for natural plant fiber-reinforced polymer composites: A review. Polymers and Polymer Composites, 29(7), 1011–1038. https://doi.org/10.1177/0967391120942419
  • Krishnan, V., & Has Normal, S. (2012). Microbial reting of jute bast fibre using aerobic sequencing batch reactor. Asian Journal of Water, Environment and Pollution, 9(2), 109–117.
  • Kumar, J., & Sheel, R. (2012). Suitability and utility value of Typha angustifolia linn. For cultivation in North Bihar Countryside Wetlands. Indian Journal of Fundamental and Applied Life Sciences, 2, 234–238.
  • Lacerda, T. M., Coma, V., Frollini, E., & Kaschuk, J. J. (2017). Enzymatic hydrolysis of mercerized and unmercerized sisal pulp. Cellulose, 24(6), 2437–2453. https://doi.org/10.1007/s10570-017-1284-z
  • Le Troedec, M., Sedan, D., Peyratout, C., Bonnet, J. P., Smith, A., Guinebretiere, R., Gloaguen, V., & Krausz, P. (2008). Influence of various chemical treatments on the composition and structure of hemp fibres. Compos A, 39(3), 514–522. https://doi.org/10.1016/j.compositesa.2007.12.001
  • Motazedi, S. M., & Kamal Moghaddam, M. (2010). An analysis of structure and properties of a natural cellulosic fiber (Leafiran). Fibers and Polymers, 11(6), 877–882. https://doi.org/10.1007/s12221-010-0877-z
  • Msahli, S. (2002). Etude de potentiel Textile des Fibres d‘agaves Americana L. [PhD thesis, Université de Haute Alsace].
  • Msahli, S., el Oudiani, A., Sakly, F., & Yves Drean, J. (2015). Study of the “interplant” Variability in Agave Americana L. Fiber Properties. International Journal of Applied Research on Textile, 3(2), 1–14.
  • Msahli, S., Sakli, F., & El Oudiani, A. (2017). In-depth study of agave fiber structure using Fourier transforminfrared spectroscopy. Carbohydrate Polymers, 164, 242–248. https://doi.org/10.1016/j.carbpol.2017.01.091
  • Mwaikambo, L. Y., & Ansell, M. P. (1999). The effect of chemical treatment on the properties of hemp, sisal, jute and kapok for composite reinforcement. Die Angewandte Makromolekulare Chemie, 272(1), 108–116. https://doi.org/10.1002/(SICI)1522-9505(19991201)272:1<108::AID-APMC108>3.3.CO;2-0
  • Mwaikambo, L. Y., & Ansell, M. P. (2006). Mechanical properties of alkali treated plant fibres and their potential as reinforcement materials II.Sisal fibres. Journal of Materials Science, 41(8), 2497–2508. https://doi.org/10.1007/s10853-006-5075-4
  • Nicoleta, T., Roger, I., & Kurt, C. S. (2011). Overview on native cellulose and microcrystalline cellulose I structure studied by X-ray diffraction (WAXD): Comparison between measurement techniques. Lenzinger Berichte, 89, 118–131.
  • Ntenga, R., Saidjo, S., Wakata, A., Djoda, P., Tango, M., & Mfoumou, E. (2022). Extraction, applications and characterization of plant fibers. In J. Han-Yong (Eds.), Natural fibers (pp. 1–33). IntechOpen. Chap. 7.
  • Peyratout, C. (2007). Physico-chemical modifications of the interactions between hemp fibres and a lime mineral matrix: Impacts on mechanical properties of mortars. In 10th International Conference of the European Ceramic Society, Berlin- Germany, pp. 451–456.
  • Pickering, L. K., Li, Y., Farrell, R. L., & Lay, M. (2007). Interfacial modification of hemp fibre reinforced composites using fungal and alkali treatment. Journal of Biobased Materials and Bioenergy, 1(1), 109–117. https://doi.org/10.1166/jbmb.2007.1984
  • Rahman, M., Cicek, N., & Chakma, K. (2021). The optimum parameters for fibre yield (%) and characterization of Typha latifolia L. fibres for textle applications. Fibers and Polymers, 22(6), 1543–1555. p https://doi.org/10.1007/s12221-021-0194-8
  • Realff, M. (2006). Systems planning for carpet recycling. In USA Georgia Institute of Technology (Ed.), Recycling in textiles (pp. 46–57). Woodhead Publishing Series in Textiles. Chap. 5.
  • Rezig, S., Jaouadi, M., Khoffi, F., Msahli, S., & Durand, B. (2023). Typha fiber reinforced polyester composites: Tensile properties and statistical analysis. The Journal of the Textile Institute, 114(5), 717–725. https://doi.org/10.1080/00405000.2022.2066433
  • Rout, E., & Sinha, S. K. (2008). Influence of fibre-surface treatment on structural, thermal and mechanical properties of jute. Journal of Materials Science. 43, 2590–2601.
  • Sana, R., Foued, K., Yosser, B. M., Mounir, J., Slah, M., & Bernard, D. (2015). Flexural properties of typha natural fiber-reinforced polyester composites. Fibers and Polymers, 16(11), 2451–2457. https://doi.org/10.1007/s12221-015-5306-x
  • Sana, R., Mounir, J., & Slah, M. (2014). Study of structure and properties of Tunisian Typha leaf fibers. International Journal of Engineering Research & Technology (IJERT), 3(3), 2278.
  • Sana, R., Mounir, J., Foued, K., Asma, E. O., Slah, M., & Bernard, D. (2022). Effect of alkali-treatment on physico-chemical properties of Typha angustata stem fiber and its composites. Journal of Natural Fibers, 19(17), 15948–15962. https://doi.org/10.1080/15440478.2022.2140327
  • Sana, R., Mounir, J., Foued, K., Slah, M., & Bernard, D. (2016a). Optimization of processing parameters for extraction of typha stem fibers. International Journal of Applied Research on Textile, 4(2), 53–64.
  • Sana, R., Mounir, J., Foued, K., Slah, M., & Bernard, D. (2016b). Optimization of extraction process of typha leaf fibres. Indian Journal of Fibre and Textile Research, 41(3), 242–248.
  • Sultana, T., Khan, W., & Bin Kader, W. (2019). Physico-mechanical properties of typha angustata fiber reinforced polystyrene bio-composites. International Journal of Advanced Research, 7(4), 419–426. https://doi.org/10.21474/IJAR01/8834
  • Thibodeaux, D. P., Condon, B., & Parikh, D. V. (2007). X-ray Crystallinity of Bleached and Crosslinked Cottons. Textile Research Journal, 77(8), 612–616. https://doi.org/10.1177/0040517507081982
  • Vi, D. T. V. (2011). Matériaux composites fibres naturelles/polymère biodégradable ou non. LCME et Laoratoire des polymères, Ecole doctorale SSEO; Université de grenoble.
  • Vijay, R., Singaravelu, D. L., Sanjay, M. R., Siengchin, S., Jawaid, M., Alamry, K. A., Asiri, A. M., & Khan, A. (2020). Extraction and characterization of natural fibers from Citrullus lanatus Climber. Journal of Natural Fibers, 19(2), 621–629. https://doi.org/10.1080/15440478.2020.1758281
  • Werchefani, M., Lacoste, C., Belguith, H., & Bradai, C. (2021). Alfa fibers for Cereplast bio-composites reinforcement: Effects of chemical and biological treatments on the mechanical properties. Polymers and Polymer Composites, 29(9_suppl), S441–S449. https://doi.org/10.1177/09673911211006067
  • Wu, J., Zhong, T., Zou, Y., Li, J., Zhao, W., & Chen, H. (2022). Microstructure, chemical composition and thermal stability of alkali-treated bamboo fibers and parenchyma cells: Effects of treatment time and temperature. Cellulose, 30(3), 1911–1925. https://doi.org/10.1007/s10570-022-04995-8
  • Xiao, B., Sun, X. F., & Sun, R. C. (2001). Chemical, structural and thermal characterization of alkali soluble lignins and hemicelluloses and cellulose from maize stems, rye straw and rice straw. Polymer Degradation and Stability. 74(2), 307–319. https://doi.org/10.1016/S0141-3910(01)00163-X
  • Zografi, G., Engers, D., Morris, K., Crowley, K., Newman, A., & Bates, S. (2006). Analysis of amorphous and nanocrystalline solids from their X-ray diffraction patterns. Pharmaceutical Research, 23(10), 2333–2349. https://doi.org/10.1007/s11095-006-9086-2
  • Zwane Pinkie, E., Thabile, N., Mkhonta Thulisile, T., Masarirambi Mike, T., & Thwala Justice, M. (2019). Effects of enzymatic treatment of sisal fibres on tensile strength and morphology. Scientific Africain, 6, 1–7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.