1,023
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Design and development of textile-based wearable sensors for real-time biomedical monitoring; a review

, , &
Received 17 Jul 2023, Accepted 06 Feb 2024, Published online: 20 Feb 2024

References

  • Adak, B., & Mukhopadhyay, S. (2023). Smart and functional textiles. Walter de Gruyter GmbH & Co KG.
  • Ahmed, A., Adak, B., & Mukhopadhyay, S. (2022). Smart textile-based interactive, stretchable and wearable sensors for healthcare nanosensors for futuristic smart and intelligent healthcare systems (pp. 112–132). CRC Press.
  • Ahmed, M. R., Newby, S., Mirihanage, W., Potluri, P., & Fernando, A. (2022). Graphene in wearable textile sensor devices for healthcare. Textile Progress, 54(3), 201–245. https://doi.org/10.1080/00405167.2022.2128015
  • Al-Eidan, R. M., Al-Khalifa, H., & Al-Salman, A. M. (2018). A review of wrist-worn wearable: Sensors, models, and challenges. Journal of Sensors, 2018, 1–20. https://doi.org/10.1155/2018/5853917
  • Ali, A. E., Jeoti, V., & Stojanović, G. M. (2021). Fabric based printed-distributed battery for wearable e-textiles: A review. Science and Technology of Advanced Materials, 22(1), 772–793. https://doi.org/10.1080/14686996.2021.1962203
  • Amitrano, F., Coccia, A., Ricciardi, C., Donisi, L., Cesarelli, G., Capodaglio, E. M., & D’Addio, G. (2020). Design and validation of an E-textile-based wearable sock for remote gait and postural assessment. Sensors, 20(22), 6691. https://doi.org/10.3390/s20226691
  • Ates, H. C., Nguyen, P. Q., Gonzalez-Macia, L., Morales-Narváez, E., Güder, F., Collins, J. J., & Dincer, C. (2022). End-to-end design of wearable sensors. Nature Reviews Materials, 7(11), 887–907. https://doi.org/10.1038/s41578-022-00460-x
  • Balint, R., Cassidy, N. J., & Cartmell, S. H. (2014). Conductive polymers: Towards a smart biomaterial for tissue engineering. Acta Biomaterialia, 10(6), 2341–2353. https://doi.org/10.1016/j.actbio.2014.02.015
  • Ballaji, H. K. (2022). Internet of things in textile sensors [Paper presentation]. 2022 Fifth National Conference of Saudi Computers Colleges (NCCC), Makkah, Saudi Arabia. https://doi.org/10.1109/NCCC57165.2022.10067274
  • Barman, J., Tirkey, A., Batra, S., Paul, A. A., Panda, K., Deka, R., & Babu, P. J. (2022). The role of nanotechnology based wearable electronic textiles in biomedical and healthcare applications. Materials Today Communications, 32, 104055. https://doi.org/10.1016/j.mtcomm.2022.104055
  • Barua, A., Al Alamin, M. A., Hossain, M. S., & Hossain, E. (2022). Security and privacy threats for bluetooth low energy in iot and wearable devices: A comprehensive survey. IEEE Open Journal of the Communications Society, 3, 251–281. https://doi.org/10.1109/OJCOMS.2022.3149732
  • Berglin, L. (2013). Smart textiles and wearable technology. Högskolan i Borås.
  • Blachowicz, T., Ehrmann, G., & Ehrmann, A. (2021). Textile-based sensors for biosignal detection and monitoring. Sensors, 21(18), 6042. https://doi.org/10.3390/s21186042
  • Cay, G., Ravichandran, V., Saikia, M. J., Hoffman, L., Laptook, A., Padbury, J., Salisbury, A. L., Gitelson-Kahn, A., Venkatasubramanian, K., Shahriari, Y., & Mankodiya, K. (2022). An E-textile respiration sensing system for NICU monitoring: Design and validation. Journal of Signal Processing Systems, 94(6), 543–557. https://doi.org/10.1007/s11265-021-01669-9
  • Choudhry, N. A., Arnold, L., Rasheed, A., Khan, I. A., & Wang, L. (2021). Textronics—A review of textile‐based wearable electronics. Advanced Engineering Materials, 23(12), 2100469. https://doi.org/10.1002/adem.202100469
  • Coccia, A., Amitrano, F., Donisi, L., Cesarelli, G., Pagano, G., Cesarelli, M., & D'Addio, G. (2021). Design and validation of an e-textile-based wearable system for remote health monitoring. Acta IMEKO, 10(2), 220–229. https://doi.org/10.21014/acta_imeko.v10i2.912
  • Cochrane, C., Hertleer, C., & Schwarz-Pfeiffer, A. (2016). Smart textiles in health: An overview. In V. Koncar (Ed.), Smart textiles and their applications (Vol. 178, pp. 9–32). Elsevier.
  • Cohen, A. (2019). Biomedical signal processing: Volume 2: Compression and Automatic Recognition. CRC Press.
  • Coyle, S., & Diamond, D. (2016). Medical applications of smart textiles. In Advances in smart medical textiles (pp. 215–237). Elsevier.
  • Coyle, S., Morris, D., Lau, K.-T., Diamond, D., & Moyna, N. (2009). Textile-based wearable sensors for assisting sports performance [Paper presentation]. 2009 Sixth International Workshop on Wearable and Implantable Body Sensor Networks, Berkeley, CA.
  • Ding, X., Clifton, D., Ji, N., Lovell, N. H., Bonato, P., Chen, W., Yu, X., Xue, Z., Xiang, T., Long, X., Xu, K., Jiang, X., Wang, Q., Yin, B., Feng, G., & Zhang, Y.-T. (2021). Wearable sensing and telehealth technology with potential applications in the coronavirus pandemic. IEEE Reviews in Biomedical Engineering, 14, 48–70. https://doi.org/10.1109/RBME.2020.2992838
  • El Gharbi, M., Fernández-García, R., Ahyoud, S., & Gil, I. (2020). A review of flexible wearable antenna sensors: Design, fabrication methods, and applications. Materials, 13(17), 3781. https://doi.org/10.3390/ma13173781
  • Fan, X., Liu, S., Jia, Z., Koh, J. J., Yeo, J. C. C., Wang, C.-G., Surat’man, N. E., Loh, X. J., Le Bideau, J., He, C., Li, Z., & Loh, T.-P. (2023). Ionogels: Recent advances in design, material properties and emerging biomedical applications. Chemical Society Reviews, 52(7), 2497–2527. https://doi.org/10.1039/d2cs00652a
  • Fang, Y., Xu, J., Xiao, X., Zou, Y., Zhao, X., Zhou, Y., & Chen, J. (2022). A deep‐learning‐assisted on‐mask sensor network for adaptive respiratory monitoring. Advanced Materials, 34(24), 2200252. https://doi.org/10.1002/adma.202200252
  • Ghahremani Honarvar, M., & Latifi, M. (2017). Overview of wearable electronics and smart textiles. The Journal of the Textile Institute, 108(4), 631–652. https://doi.org/10.1080/00405000.2016.1177870
  • Gonçalves, C., Ferreira da Silva, A., Gomes, J., & Simoes, R. (2018). Wearable E-textile technologies: A review on sensors, actuators and control elements. Inventions, 3(1), 14. https://doi.org/10.3390/inventions3010014
  • Goud, K. Y., Sandhu, S. S., Teymourian, H., Yin, L., Tostado, N., Raushel, F. M., Harvey, S. P., Moores, L. C., & Wang, J. (2021). Textile-based wearable solid-contact flexible fluoride sensor: Toward biodetection of G-type nerve agents. Biosensors & Bioelectronics, 182, 113172. https://doi.org/10.1016/j.bios.2021.113172
  • Hasan, M. M., & Hossain, M. M. (2021). Nanomaterials-patterned flexible electrodes for wearable health monitoring: A review. Journal of Materials Science, 56(27), 14900–14942. https://doi.org/10.1007/s10853-021-06248-8
  • Hatamie, A., Angizi, S., Kumar, S., Pandey, C. M., Simchi, A., Willander, M., & Malhotra, B. D. (2020). Textile based chemical and physical sensors for healthcare monitoring. Journal of the Electrochemical Society, 167(3), 037546. https://doi.org/10.1149/1945-7111/ab6827
  • He, T., Chen, J., He, B.-G., Wang, W., Zhu, Z-l., & Lv, Z. (2023). Towards the wearable sensors: Advances, trends and challenges. ACM Computing Surveys, 55(14s), 1–35. https://doi.org/10.1145/3596599
  • Heo, J. S., Eom, J., Kim, Y., & Park, S. K. (2018). Recent progress of textile‐based wearable electronics: A comprehensive review of materials, devices, and applications. Small (Weinheim an Der Bergstrasse, Germany), 14(3), 1703034. https://doi.org/10.1002/smll.201703034
  • Heo, J. S., Hossain, M. F., & Kim, I. (2020). Challenges in design and fabrication of flexible/stretchable carbon-and textile-based wearable sensors for health monitoring: A critical review. Sensors, 20(14), 3927. https://doi.org/10.3390/s20143927
  • Ismar, E., Kurşun Bahadir, S., Kalaoglu, F., & Koncar, V. (2020). Futuristic clothes: Electronic textiles and wearable technologies. Global Challenges (Hoboken, NJ), 4(7), 1900092. https://doi.org/10.1002/gch2.201900092
  • Iyer, S. V., George, J., Sathiyamoorthy, S., Palanisamy, R., Majumdar, A., & Veluswamy, P. (2022). Pertinence of textile-based energy harvesting system for biomedical applications. Journal of Nanomaterials, 2022, 1–13. https://doi.org/10.1155/2022/7921479
  • Jang, M., Kim, H.-D., Koo, H.-J., & So, J.-H. (2022). Textile-based wearable sensor for skin hydration monitoring. Sensors, 22(18), 6985. https://doi.org/10.3390/s22186985
  • Kan, C.-W., & Lam, Y.-L. (2021). Future trend in wearable electronics in the textile industry. Applied Sciences, 11(9), 3914. https://doi.org/10.3390/app11093914
  • Kechiche, M. B., Bauer, F., Harzallah, O., & Drean, J.-Y. (2013). Development of piezoelectric coaxial filament sensors P(VDF-TrFE)/copper for textile structure instrumentation. Sensors and Actuators A: Physical, 204, 122–130. https://doi.org/10.1016/j.sna.2013.10.007
  • Khan, Y., Ostfeld, A. E., Lochner, C. M., Pierre, A., & Arias, A. C. (2016). Monitoring of vital signs with flexible and wearable medical devices. Advanced Materials, 28(22), 4373–4395. https://doi.org/10.1002/adma.201504366
  • Khoshmanesh, F., Thurgood, P., Pirogova, E., Nahavandi, S., & Baratchi, S. (2021). Wearable sensors: At the frontier of personalised health monitoring, smart prosthetics and assistive technologies. Biosensors & Bioelectronics, 176, 112946. https://doi.org/10.1016/j.bios.2020.112946
  • Kim, H., Shaqeel, A., Han, S., Kang, J., Yun, J., Lee, M., Lee, S., Kim, J., Noh, S., Choi, M., & Lee, J. (2021). In situ formation of Ag nanoparticles for fiber strain sensors: Toward textile-based wearable applications. ACS Applied Materials & Interfaces, 13(33), 39868–39879. https://doi.org/10.1021/acsami.1c09879
  • Kwak, S. S., Yoon, H., & Kim, S. (2019). Textile‐based triboelectric nanogenerators for self‐powered wearable electronics. Advanced Functional Materials, 29(2), 1804533. https://doi.org/10.1002/adfm.201804533
  • Lanatà, A., Scilingo, E. P., & De Rossi, D. (2009). A multimodal transducer for cardiopulmonary activity monitoring in emergency. IEEE Transactions on Information Technology in Biomedicine, 14(3), 817–825. https://doi.org/10.1109/TITB.2009.2024414
  • Lewy, H. (2015). Wearable technologies—Future challenges for implementation in healthcare services. Healthcare Technology Letters, 2(1), 2–5. https://doi.org/10.1049/htl.2014.0104
  • Li, H., Fan, R., Zou, B., Yan, J., Shi, Q., & Guo, G. (2023). Roles of MXenes in biomedical applications: Recent developments and prospects. Journal of Nanobiotechnology, 21(1), 73. https://doi.org/10.1186/s12951-023-01809-2
  • Li, S., Li, H., Lu, Y., Zhou, M., Jiang, S., Du, X., & Guo, C. (2023). Advanced textile-based wearable biosensors for healthcare monitoring. Biosensors, 13(10), 909. https://doi.org/10.3390/bios13100909
  • Liang, T., & Yuan, Y. J. (2016). Wearable medical monitoring systems based on wireless networks: A review. IEEE Sensors Journal, 16(23), 1–1. https://doi.org/10.1109/JSEN.2016.2597312
  • Liang, X., Zhu, M., Li, H., Dou, J., Jian, M., Xia, K., Li, S., & Zhang, Y. (2022). Hydrophilic, breathable, and washable graphene decorated textile assisted by silk sericin for integrated multimodal smart wearables. Advanced Functional Materials, 32(42), 2200162. https://doi.org/10.1002/adfm.202200162
  • Liu, H., Xu, D., Hu, B., Jiang, J., Li, M., Zhao, D., & Zhai, W. (2021). Eco-friendly biogenic hydrogel for wearable skin-like iontronics. Journal of Materials Chemistry A, 9(8), 4692–4699. https://doi.org/10.1039/D0TA12345E
  • Liu, M., Pu, X., Jiang, C., Liu, T., Huang, X., Chen, L., Du, C., Sun, J., Hu, W., & Wang, Z. L. (2017). Large‐area all‐textile pressure sensors for monitoring human motion and physiological signals. Advanced Materials, 29(41), 1703700. https://doi.org/10.1002/adma.201703700
  • Liu, X., Miao, J., Fan, Q., Zhang, W., Zuo, X., Tian, M., Zhu, S., Zhang, X., & Qu, L. (2022). Recent progress on smart fiber and textile based wearable strain sensors: Materials, fabrications and applications. Advanced Fiber Materials, 4(3), 361–389. https://doi.org/10.1007/s42765-021-00126-3
  • Liu, Y., Shang, S., Mo, S., Wang, P., & Wang, H. (2021). Eco-friendly strategies for the material and fabrication of wearable sensors. International Journal of Precision Engineering and Manufacturing-Green Technology, 8(4), 1323–1346. https://doi.org/10.1007/s40684-020-00285-5
  • Lo Presti, D., Romano, C., Massaroni, C., D’Abbraccio, J., Massari, L., Caponero, M. A., Oddo, C. M., Formica, D., & Schena, E. (2019). Cardio-respiratory monitoring in archery using a smart textile based on flexible fiber Bragg grating sensors. Sensors, 19(16), 3581. https://doi.org/10.3390/s19163581
  • Mabrouk, M., Das, D. B., Salem, Z. A., & Beherei, H. H. (2021). Nanomaterials for biomedical applications: Production, characterisations, recent trends and difficulties. Molecules (Basel, Switzerland), 26(4), 1077. https://doi.org/10.3390/molecules26041077
  • Majumder, S., Mondal, T., & Deen, M. J. (2017). Wearable sensors for remote health monitoring. Sensors, 17(12), 130. https://doi.org/10.3390/s17010130
  • Mansi, S. A., Barone, G., Forzano, C., Pigliautile, I., Ferrara, M., Pisello, A. L., & Arnesano, M. (2021). Measuring human physiological indices for thermal comfort assessment through wearable devices: A review. Measurement, 183, 109872. https://doi.org/10.1016/j.measurement.2021.109872
  • Maselli, M., Mussi, E., Cecchi, F., Manti, M., Tropea, P., & Laschi, C. (2018). A wearable sensing device for monitoring single planes neck movements: Assessment of its performance. IEEE Sensors Journal, 18(15), 6327–6336. https://doi.org/10.1109/JSEN.2018.2847454
  • Massaroni, C., Saccomandi, P., Formica, D., Lo Presti, D., Caponero, M. A., Di Tomaso, G., Giurazza, F., Muto, M., & Schena, E. (2016). Design and feasibility assessment of a magnetic resonance-compatible smart textile based on fiber Bragg grating sensors for respiratory monitoring. IEEE Sensors Journal, 16(22), 8103–8110. https://doi.org/10.1109/JSEN.2016.2606487
  • Mattmann, C., Clemens, F., & Tröster, G. (2008). Sensor for measuring strain in textile. Sensors (Basel, Switzerland), 8(6), 3719–3732. https://doi.org/10.3390/s8063719
  • Molinaro, N., Massaroni, C., Presti, D. L., Saccomandi, P., Di Tomaso, G., Zollo, L., Perego, P., Andreoni, G., & Schena, E. (2018). Wearable textile based on silver plated knitted sensor for respiratory rate monitoring [Paper presentation]. 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, Hawaii. https://doi.org/10.1109/EMBC.2018.8512958
  • Mukhopadhyay, S. C., Suryadevara, N. K., & Nag, A. (2022). Wearable sensors for healthcare: Fabrication to application. Sensors, 22(14), 5137. https://doi.org/10.3390/s22145137
  • Munro, B. J., Campbell, T. E., Wallace, G. G., & Steele, J. R. (2008). The intelligent knee sleeve: A wearable biofeedback device. Sensors and Actuators B: Chemical, 131(2), 541–547. https://doi.org/10.1016/j.snb.2007.12.041
  • Muthukumar, N., & Thilagavathi, G. (2012). Development and characterization of electrically conductive polyaniline coated fabrics. Journal of Chemical Technology, 19, 434–441.
  • Nigusse, A. B., Mengistie, D. A., Malengier, B., Tseghai, G. B., & Langenhove, L. V. (2021). Wearable smart textiles for long-term electrocardiography monitoring—A review. Sensors, 21(12), 4174. https://doi.org/10.3390/s21124174
  • Nilsson, E., Lund, A., Jonasson, C., Johansson, C., & Hagström, B. (2013). Poling and characterization of piezoelectric polymer fibers for use in textile sensors. Sensors and Actuators A: Physical, 201, 477–486. https://doi.org/10.1016/j.sna.2013.08.011
  • Niu, B., Hua, T., Hu, H., Xu, B., Tian, X., Chan, K., & Chen, S. (2019). A highly durable textile-based sensor as a human-worn material interface for long-term multiple mechanical deformation sensing. Journal of Materials Chemistry C, 7(46), 14651–14663. https://doi.org/10.1039/C9TC04006D
  • Presti, D. L., Massaroni, C., Schena, P. S. E., Formica, D., Caponero, M. A., & Di Tomaso, G. (2018). Smart textile based on FBG sensors for breath-by-breath respiratory monitoring: Tests on women [Paper presentation]. 2018 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Rome, Italy. https://doi.org/10.1109/MeMeA.2018.8438721
  • Ramanujam, E., Perumal, T., & Padmavathi, S. (2021). Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal, 21(12), 13029–13040. https://doi.org/10.1109/JSEN.2021.3069927
  • Seçkin, M., Seçkin, A. Ç., & Gençer, Ç. (2022). Biomedical sensors and applications of wearable technologies on arm and hand. Biomedical Materials & Devices, 1(1), 443–455. https://doi.org/10.1007/s44174-022-00002-7
  • Seyedin, S., Razal, J. M., Innis, P. C., Jeiranikhameneh, A., Beirne, S., & Wallace, G. G. (2015). Knitted strain sensor textiles of highly conductive all-polymeric fibers. ACS Applied Materials & Interfaces, 7(38), 21150–21158. https://doi.org/10.1021/acsami.5b04892
  • Shan, G., Li, X., & Huang, W. (2020). AI-enabled wearable and flexible electronics for assessing full personal exposures. The Innovation, 1(2), 100031. https://doi.org/10.1016/j.xinn.2020.100031
  • Singh, A., & Patel, D. K. (2022). Nanomaterials for biomedical engineering applications. Nanomaterials for advanced technologies (pp. 75–102). Springer.
  • Sonawane, A., Manickam, P., & Bhansali, S. (2017). Stability of enzymatic biosensors for wearable applications. IEEE Reviews in Biomedical Engineering, 10, 174–186. https://doi.org/10.1109/RBME.2017.2706661
  • Sonawani, S., Patil, K., & Natarajan, P. (2023). Biomedical signal processing for health monitoring applications: A review. International Journal of Applied Systemic Studies, 10(1), 44–69. https://doi.org/10.1504/IJASS.2023.129065
  • Sridhar, S., Markussen, A., Oulasvirta, A., Theobalt, C., & Boring, S. (2017). Watchsense: On-and above-skin input sensing through a wearable depth sensor [Paper presentation]. Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, Denver, CO, USA.
  • Subasi, A. (2019). Practical guide for biomedical signals analysis using machine learning techniques: A MATLAB based approach. Academic Press.
  • Takamatsu, S., Kobayashi, T., Shibayama, N., Miyake, K., & Itoh, T. (2012). Fabric pressure sensor array fabricated with die-coating and weaving techniques. Sensors and Actuators A: Physical, 184, 57–63. https://doi.org/10.1016/j.sna.2012.06.031
  • Tseghai, G. B., Malengier, B., Fante, K. A., & Langenhove, L. V. (2021). The status of textile-based dry EEG electrodes. Autex Research Journal, 21(1), 63–70. https://doi.org/10.2478/aut-2019-0071
  • Wang, C., Yokota, T., & Someya, T. (2021). Natural biopolymer-based biocompatible conductors for stretchable bioelectronics. Chemical Reviews, 121(4), 2109–2146. https://doi.org/10.1021/acs.chemrev.0c00897
  • Wang, Y., Yang, B., Hua, Z., Zhang, J., Guo, P., Hao, D., Gao, Y., & Huang, J. (2021). Recent advancements in flexible and wearable sensors for biomedical and healthcare applications. Journal of Physics D: Applied Physics, 55(13), 134001. https://doi.org/10.1088/1361-6463/ac3c73
  • Wu, S., Xu, C., Zhao, Y., Shi, W., Li, H., Cai, J., Ding, F., & Qu, P. (2023). Recent advances in chitosan-based hydrogels for flexible wearable sensors. Chemosensors, 11(1), 39. https://doi.org/10.3390/chemosensors11010039
  • Xu, Z., Song, J., Liu, B., Lv, S., Gao, F., Luo, X., & Wang, P. (2021). A conducting polymer PEDOT: PSS hydrogel based wearable sensor for accurate uric acid detection in human sweat. Sensors and Actuators B: Chemical, 348, 130674. https://doi.org/10.1016/j.snb.2021.130674
  • Yamaji, T., Nakamoto, H., Ootaka, H., Hirata, I., & Kobayashi, F. (2017). Rapid prototyping human interfaces using stretchable strain sensor. Journal of Sensors, 2017, 1–9. https://doi.org/10.1155/2017/9893758
  • Yang, B., Jiang, X., Fang, X., & Kong, J. (2021). Wearable chem-biosensing devices: From basic research to commercial market. Lab on a Chip, 21(22), 4285–4310. https://doi.org/10.1039/d1lc00438g
  • Yang, D., Cheng, Y., Zhu, J., Xue, D., Abt, G., Ye, H., & Peng, Y. (2018). A novel adaptive spectrum noise cancellation approach for enhancing heartbeat rate monitoring in a wearable device. IEEE Access, 6, 8364–8375. https://doi.org/10.1109/ACCESS.2018.2805223
  • Yuan, Y., Liu, B., Li, H., Li, M., Song, Y., Wang, R., Wang, T., & Zhang, H. (2022). Flexible wearable sensors in medical monitoring. Biosensors, 12(12), 1069. https://doi.org/10.3390/bios12121069
  • Zahid, M., Anwer Rathore, H., Tayyab, H., Ahmad Rehan, Z., Abdul Rashid, I., Lodhi, M., Zubair, U., & Shahid, I. (2022). Recent developments in textile based polymeric smart sensor for human health monitoring: A review. Arabian Journal of Chemistry, 15(1), 103480. https://doi.org/10.1016/j.arabjc.2021.103480
  • Zhang, J., Zhang, Y., Li, Y-y., & Wang, P. (2022). Textile-based flexible pressure sensors: A review. Polymer Reviews, 62(1), 65–94. https://doi.org/10.1080/15583724.2021.1901737
  • Zhang, Y., Lin, Z., Huang, X., You, X., Ye, J., & Wu, H. (2020). A Large‐Area, Stretchable, Textile‐Based Tactile Sensor. Advanced Materials Technologies, 5(4), 1901060. https://doi.org/10.1002/admt.201901060
  • Zhang, Z., Gao, Z., Wang, Y., Guo, L., Yin, C., Zhang, X., Hao, J., Zhang, G., & Chen, L. (2019). Eco-friendly, self-healing hydrogels for adhesive and elastic strain sensors, circuit repairing, and flexible electronic devices. Macromolecules, 52(6), 2531–2541. https://doi.org/10.1021/acs.macromol.8b02466
  • Zhao, J., Fu, Y., Xiao, Y., Dong, Y., Wang, X., & Lin, L. (2020). A naturally integrated smart textile for wearable electronics applications. Advanced Materials Technologies, 5(1), 1900781. https://doi.org/10.1002/admt.201900781