19
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Optimization and investigation of Physical, chemical, and biological properties of nanofibers produced from (poly glycerol Sebacate-co-caprolactone)/gelatin/peptide and scaffold’s cellular behavior

, ORCID Icon &
Received 02 Dec 2023, Accepted 22 May 2024, Published online: 24 Jun 2024

References

  • Ahmadi, S., Hivechi, A., Bahrami, S. H., Milan, P. B., & Ashraf, S. S. (2021). Cinnamon extract loaded electrospun chitosan/gelatin membrane with antibacterial activity. International Journal of Biological Macromolecules, 173, 580–590. https://doi.org/10.1016/j.ijbiomac.2021.01.156
  • Amani, J. A., Barjini, K., Moghadda, M., M., & Asad, A. (2015). In vitro synergistic effect of the CM11 antimicrobial peptide in combination with common antibiotics against clinical isolates of six species of multidrug-resistant pathogenic bacteria. Protein and Peptide Letters, 22(10), 940–951. https://doi.org/10.2174/0929866522666150728115439
  • Behere, I., & Ingavle, G. (2022). In vitro and in vivo advancement of multifunctional electrospun nanofiber scaffolds in wound healing applications: Innovative nanofiber designs, stem cell approaches, and future perspectives. Journal of Biomedical Materials Research Part A, 110(2), 443–461. https://doi.org/10.1002/jbm.a.37290
  • Behtouei, E., Zandi, M., Askari, F., Daemi, H., Zamanlui, S., Mishabi, A. A., & Modaress, M. P. (2022). Bead-free and tough electrospun PCL/gelatin/PGS ternary nanofibrous scaffolds for tissue engineering application. Journal of Applied Polymer Science, 139(2), 51471. https://doi.org/10.1002/app.51471
  • Boncu, T. E., & Ozdemir, N. (2022). Electrospinning of ampicillin trihydrate loaded electrospun PLA nanofibers I: Effect of polymer concentration and PCL addition on its morphology, drug delivery and mechanical properties. International Journal of Polymeric Materials and Polymeric Biomaterials, 71(9), 669–676. https://doi.org/10.1080/00914037.2021.1876057
  • Cai, W., & Liu, L. (2008). Shape-memory effect of poly (glycerol–sebacate) elastomer. Materials Letters, 62(14), 2171–2173. https://doi.org/10.1016/j.matlet.2007.11.042
  • Dhivya, S., Padma, V. V., & Santhini, E. (2015). Wound dressings – A review. BioMedicine, 5(4), 22. https://doi.org/10.7603/s40681-015-0022-9
  • Eming, S. A., Martin, P., & Canic, M. T. (2014). Wound repair and regeneration: Mechanisms, signaling, and translation. Science Translational Medicine, 6(265), 265sr6. https://doi.org/10.1126/scitranslmed.3009337
  • Farahani, A. M., Hanzaki, A. Z., Abedi, H. R., Daryoush, S., Ragheb, Z. D., Mianabadi, F., Shahparvar, S., Akrami, M., Mostafavi, E., Khanbareh, H., & Nezami, F. R. (2023). Silk-based biopolymers promise extensive biomedical applications in tissue engineering, drug delivery, and BioMEMS. Journal of Polymers and the Environment, 31(11), 4559–4582. https://doi.org/10.1007/s10924-023-02906-x
  • Felgueiras, H. p., & Amorim, M. T. P. (2017). Functionalization of electrospun polymeric wound dressings with antimicrobial peptides. Colloids and Surfaces. B, Biointerfaces, 156, 133–148. https://doi.org/10.1016/j.colsurfb.2017.05.001
  • García, Á. C., Gimeno, H. R., Sáez, Y. M., Feltrer, G. V., Lizarán, I. O., & Lluch, A. V. (2017). Correlating synthesis parameters with physicochemical properties of poly (glycerol sebacate). European Polymer Journal, 87, 406–419. https://doi.org/10.1016/j.eurpolymj.2017.01.001
  • Godinho, B., Gama, N., & Ferreira, A. (2022). Different methods of synthesizing poly (glycerol sebacate) (PGS): A review. National Library of Medicine, 10, 1033827. https://doi.org/10.3389/fbioe.2022.1033827
  • Heras, K. L., Igartua, M., Vizcaino, E. S., & Hernandez, R. M. (2020). Chronic wounds: Current status, available strategies and emerging therapeutic solutions. Journal of Controlled Release: Official Journal of the Controlled Release Society, 328, 532–550. https://doi.org/10.1016/j.jconrel.2020.09.039
  • Heydari, P., Varshosaz, J., Zargar Kharazi, A., & Karbasi, S. (2018). Preparation and evaluation of poly glycerol sebacate/poly hydroxy butyrate core‐shell electrospun nanofibers with sequentially release of ciprofloxacin and simvastatin in wound dressings. Polymers for Advanced Technologies, 29(6), 1795–1803. https://doi.org/10.1002/pat.4286
  • Hivechi, A., Bahrami, S. H., Siegel, R. A., Milan, P. B., & Amoupour, M. (2020). In vitro and in vivo studies of biaxially electrospun poly (caprolactone)/gelatin nanofibers, reinforced with cellulose nanocrystals. for wound healing applications. Cellulose, 27(9), 5179–5196. https://doi.org/10.1007/s10570-020-03106-9
  • Iacob, A. T., Drăgan, M., Ionescu, O. M., Profire, L., Ficai, A., Andronescu, E., Confederat, L. G., & Lupașcu, D. (2020). An overview of biopolymeric electrospun nanofibers based on polysaccharides for wound healing management. Pharmaceutics, 12(10), 983. https://doi.org/10.3390/pharmaceutics12100983
  • Jeffries, E. M., Allen, R. A., Gao, J., Pesce, M., & Wang, Y. (2015). Highly elastic and suturable electrospun poly (glycerol sebacate) fibrous scaffolds. Acta Biomaterialia, 18, 30–39. https://doi.org/10.1016/j.actbio.2015.02.005
  • Kanani, A. G., & Bahrami, S. H. (2011). Effect of changing solvents on poly(ϵ-caprolactone) nanofibrous webs morphology. Journal of Nanomaterials, 2011, 1–10. https://doi.org/10.1155/2011/724153
  • Kermani, P. K., & Kharazi, A. Z. (2023). A promising antibacterial wound dressing made of electrospun poly (glycerol sebacate) (PGS)/gelatin with local delivery of ascorbic acid and pantothenic acid. Journal of Polymers and the Environment, 31(6), 2504–2518. https://doi.org/10.1007/s10924-022-02715-8
  • Kharaziha, M., Nikkhah, M., Shin, S. R., Annabi, N., Masoumi, N., Gaharwar, A. K., Unal, G. C., & Khademhosseini, A. (2013). PGS:Gelatin nanofibrous scaffolds with tunable mechanical and structural properties for engineering cardiac tissues. Biomaterials, 34(27), 6355–6366. https://doi.org/10.1016/j.biomaterials.2013.04.045
  • Khosravimelal, S., Chizari, M., Farhadihosseinabadi, B., Moosazadeh, M., & Gholipourmalekabadi, M. (2021). Fabrication and characterization of an antibacterial chitosan/silk fibroin electrospun nanofiber loaded with a cationic peptide for wound-dressing application. Journal of Materials Science. Materials in Medicine, 32(9), 114. https://doi.org/10.1007/s10856-021-06542-6
  • Kouchehbaghi, N. H., Sohrabi, M., Razbin, M., Daryakenari, A. A., Abbasi, M., & Bahrami, S. H. (2023). Soft computing procedure to optimize the electrospinning parameters of polyacrylonitrile nanofibrous air filter. The Journal of the Textile Institute, 115, 1–13. https://doi.org/10.1080/00405000.2023.2263678
  • Koushki, P., Bahrami, S. H., & Mohammadi, M. R. (2018). Coaxial nanofibers from poly(caprolactone)/poly (vinyl alcohol)/Thyme and their antibacterial properties. Journal of Industrial Textiles, 5, 834–852. https://doi.org/10.1177/15280837166749
  • Li, R., Liu, K., Huang, X., Li, D., Ding, J., Liu, B., & Chen, X. (2022). Bioactive materials promote wound healing through modulation of cell behaviors. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 9(10), e2105152. https://doi.org/10.1002/advs.202105152
  • Liang, S. L., Cook, W. D., Thouas, G. A., & Che, Q. Z. (2010). The mechanical characteristics and in vitro biocompatibility of poly (glycerol sebacate)-Bioglass® elastomeric composites. Biomaterials, 31(33), 8516–8529. https://doi.org/10.1016/j.biomaterials.2010.07.105
  • Loh, X. J., Karim, A. A., & Owh, C. (2015). Poly (glycerol sebacate) biomaterial: Synthesis and biomedical applications. Journal of Materials Chemistry. B, 3(39), 7641–7652. https://doi.org/10.1039/C5TB01048A
  • Majidansari, S., Vahedi, N., Rekabgardan, M., Ganjoury, C., Najmoddin, N., Tabatabaei, M., Sigaroodi, F., Bagherpour, P. N., Taheri, S. A. A., & Khani, M. M. (2023). Enhancing endothelial differentiation of human mesenchymal stem cells by culture on a nanofibrous polycaprolactone/(poly-glycerol sebacate)/gelatin scaffold. Polymers for Advanced Technologies, 34(2), 740–747. https://doi.org/10.1002/pat.5925
  • Mohammadi, M.-R., Kargozar, S., Bahrami, S. H., & Rabbani, S. (2020). An excellent nanofibrous matrix based on gum tragacanth-poly (Ɛ-caprolactone)-poly (vinyl alcohol) for application in diabetic wound healing. Polymer Degradation and Stability, 174, 109105. https://doi.org/10.1016/j.polymdegradstab.2020.109105
  • Nasari, M., Poursharifi, N., Fakhrali, A., Banitaba, S. N., Mohammadi, S., & Semnani, D. (2022). Fabrication of novel PCL/PGS fibrous scaffold containing HA and GO through simultaneous electrospinning-electrospray technique. International Journal of Polymeric Materials and Polymeric Biomaterials, 72(18), 1529–1545. https://doi.org/10.1080/00914037.2022.2112678
  • Pakolpakçıl, A., & Draczynski, Z. (2021). Preparation and characterization of the advanced alginate-based nanofibrous nonwoven using EDC/NHS coupling agent by electrospinning. The Journal of the Textile Institute, 113(9), 1908–1916. https://doi.org/10.1080/00405000.2021.1954806
  • Pêgo, A. P., Poot, A. A., Grijpma, D. W., & Feijen, J. (2003). Biodegradable elastomeric scaffolds for soft tissue engineering. Journal of Controlled Release: Official Journal of the Controlled Release Society, 87(1-3), 69–79. https://doi.org/10.1016/S0168-3659(02)00351-6
  • Persenaire, O., Alexandre, M., Degée, P., & Dubois, P. (2001). Mechanisms and kinetics of thermal degradation of poly(ε-caprolactone). Biomacromolecules, 2(1), 288–294. https://doi.org/10.1021/bm0056310
  • Rai, R., Tallawi, M., Grigore, A., & Boccaccini, A. R. (2012). Synthesis, properties and biomedical applications of poly (glycerol sebacate) (PGS): A review. Progress in Polymer Science, 37(8), 1051–1078. https://doi.org/10.1016/j.progpolymsci.2012.02.001
  • Rostamian, M., Kalaee, M. R., Dehkordi, S. R., Panahi-Sarmad, M., Tirgar, M., & Goodarzi, V. (2020). Design and characterization of poly(glycerol-sebacate)-co-poly(caprolactone) (PGS-co-PCL) and its nanocomposites as novel biomaterials: The promising candidate for soft tissue engineering. European Polymer Journal, 138, 109985. https://doi.org/10.1016/j.eurpolymj.2020.109985
  • Sant, S., Hwang, C. M., Lee, S. H., & Khademhosseini, A. (2011). Hybrid PGS–PCL microfibrous scaffolds with improved mechanical and biological properties. Journal of Tissue Engineering and Regenerative Medicine, 5(4), 283–291. https://doi.org/10.1002/term.313
  • Sharifi, M., Sadati, S. A., Bahrami, S. H., & Haramshahi, S. M. A. (2023). Modeling and optimization of poly (lactic acid)/poly(ℇ-caprolactone)/Nigella sativa extract nanofibers production for skin wounds healing by artificial neural network and response surface methodology models. International Journal of Biological Macromolecules, 253(Pt 8), 127227. https://doi.org/10.1016/j.ijbiomac.2023.127227
  • Shi, C., Wang, C., Liu, H., Li, Q., Li, R., Zhang, Y., Liu, Y., Shao, Y., & Wang, J. (2020). Selection of appropriate wound dressing for various wounds. Frontiers in Bioengineering and Biotechnology, 8, 182. https://doi.org/10.3389/fbioe.2020.00182
  • Shokrollahi, M., Bahrami, S. H., Nazarpak, M. H., & Solouk, A. (2020). Multilayer nanofibrous patch comprising chamomile loaded carboxyethyl chitosan/poly (vinyl alcohol) and polycaprolactone as a potential wound dressing. International Journal of Biological Macromolecules, 147, 547–559. https://doi.org/10.1016/j.ijbiomac.2020.01.067
  • Silva, J. C., Udangawa, R. N., Chen, J., Mancinelli, C. D., Garrud, F. F. F., Mikael, P. E., Cabral, J. M. S., Ferreira, F. C., & Linhardt, R. J. (2020). Kartogenin-loaded coaxial PGS/PCL aligned nanofibers for cartilage tissue engineering. Materials Science & Engineering. C, Materials for Biological Applications, 107, 110291. https://doi.org/10.1016/j.msec.2019.110291
  • Sim, S., & Wong, N. K. (2021). Nanotechnology and its use in imaging and drug delivery (Review). Biomedical Reports, 14(5), 42. https://doi.org/10.3892/br.2021.1418
  • Singh, D., Harding, A. J., Albadawi, E., Boissonade, F. M., Haycock, J. W., & Claeyssens, F. (2018). Additive manufactured biodegradable poly (glycerol sebacate methacrylate) nerve guidance conduits. Acta Biomaterialia, 78, 48–63. https://doi.org/10.1016/j.actbio.2018.07.055
  • Sousa, M. G., Rezende, T. M., & Franco, O. L. (2021). Nanofibers as drug-delivery systems for antimicrobial peptides. Drug Discovery Today, 26(8), 2064–2074. https://doi.org/10.1016/j.drudis.2021.03.008
  • Timnak, A., Gharebaghi, F. Y., Shariati, R. P., Bahrami, S. H., Javadian, S., Emami, S. H., & Shokrgoza, M. A. (2011). Fabrication of nano-structured electrospun collagen scaffold intended for nerve tissue engineering. Journal of Materials Science. Materials in Medicine, 22(6), 1555–1567. https://doi.org/10.1007/s10856-011-4316-5
  • Vogt, L., Rivera, L. R., Liverani, L., Piegat, A., El Fray, M., & Boccaccini, A. R. (2019). Poly(ε-caprolactone)/poly (glycerol sebacate) electrospun scaffolds for cardiac tissue engineering using benign solvents. Materials Science & Engineering. C, Materials for Biological Applications, 103, 109712. https://doi.org/10.1016/j.msec.2019.04.091
  • Vogt, L., Ruther, F., Salehi, S., & Boccaccini, A. R. (2021). Poly(Glycerol Sebacate) in biomedical applications—A review of the recent literature. Advanced Healthcare Materials, 10(9), e2002026. https://doi.org/10.1002/adhm.202002026
  • Wang, Y., Kim, Y. M., & Langer, R. (2003). In vivo degradation characteristics of poly (glycerol sebacate). Journal of Biomedical Materials Research. Part A, 66(1), 192–197. https://doi.org/10.1002/jbm.a.10534
  • Yang, Q., Xie, Z., Hu, J., & Liu, Y. (2021). Hyaluronic acid nanofiber mats loaded with antimicrobial peptide towards wound dressing applications. Materials Science & Engineering. C, Materials for Biological Applications, 128, 112319. https://doi.org/10.1016/j.msec.2021.112319
  • Yıldız, A., Kara, A. A., & Acartürk, F. (2020). Peptide-protein based nanofibers in pharmaceutical and biomedical applications. International Journal of Biological Macromolecules, 148, 1084–1097. https://doi.org/10.1016/j.ijbiomac.2019.12.275
  • Yu, J. W., Sun, L. J., Zhao, Y. H., Kang, P., & Yan, B. Z. (2011). Impact of sex on virologic response rates in genotype 1 chronic hepatitis C patients with peginterferon alpha-2a and ribavirin treatment. International Journal of Infectious Diseases: IJID: Official Publication of the International Society for Infectious Diseases, 15(11), e740–746. https://doi.org/10.1016/j.ijid.2011.05.018
  • Yu, R., Zhang, H., & Guo, B. (2022). Conductive biomaterials as bioactive wound dressing for wound healing and skin tissue engineering. Nano-Micro Letters, 14(1), 1–46. https://doi.org/10.1007/s40820-021-00751-y
  • Zheng, X., Zhang, P., Fu, Z., Meng, S., Dai, L., & Yang, H. (2021). Applications of nanomaterials in tissue engineering. RSC Advances, 11(31), 19041–19058. https://doi.org/10.1039/D1RA01849C

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.