12
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Enhancing energy efficiency in power looms: utilizing regression machine learning for electrokinetic energy assessment

, &
Received 21 Dec 2023, Accepted 02 Jun 2024, Published online: 24 Jun 2024

References

  • Aabid, A., Abdul Raheman, M., Ibrahim, Y. E., Anjum, A., Hrairi, M., Parveez, B., Parveen, N., & Mohammed Zayan, J. (2021). A systematic review of piezoelectric materials and energy harvesters for industrial applications. Sensors (Basel, Switzerland), 21(12), 4145. https://doi.org/10.3390/s21124145
  • Abidin, N. A., Nayan, N. M., Azizan, M. M., Ali, A., Hussin, N., Azli, N. A., & Nordin, N. M. (2020). The simulation analysis of piezoelectric transducer with multi-array configuration. Journal of Physics, 1432(1), 012042. https://doi.org/10.1088/1742-6596/1432/1/012042
  • Ahamad, N. B. b., Su, C.-L., Zhaoxia, X., Vasquez, J. C., Guerrero, J. M., & Liao, C.-H. (2019). Energy harvesting from harbor cranes with flywheel energy storage systems. IEEE Transactions on Industry Applications, 55(4), 3354–3364. https://doi.org/10.1109/TIA.2019.2910495
  • Akhter, M. N., Mekhilef, S., Mokhlis, H., & Mohamed Shah, N. (2019). Review on forecasting of photovoltaic power generation based on machine learning and metaheuristic techniques. IET Renewable Power Generation, 13(7), 1009–1023. https://doi.org/10.1049/iet-rpg.2018.5649
  • Al-Baidhani, H., & Kazimierczuk, M. K. (2023). Simplified nonlinear current-mode control of DC-DC cuk converter for low-cost industrial applications. Sensors (Basel, Switzerland), 23(3), 1462. https://doi.org/10.3390/s23031462
  • Anung, Ramady, G. D., Sungkar, M. S., Nuhgraha, Y. A., & Wirjawan, A. (2023). Reduksi Rugi-Rugi Pensaklaran Pada Konverter Dc-Dc Zeta Dengan Teknik Zero Voltage Transition. Power Elektronik: Jurnal Orang Elektro, 12(1), 49–53. https://doi.org/10.30591/polektro.v12i1.4378
  • Beulin, E. V., & Pradeep, J. (2018). Design of ultra-lift luo converter for pumping applications. In International Conference on Power, Energy, Control and Transmission Systems (ICPECTS) (pp. 103–106). https://doi.org/10.1109/ICPECTS.2018.8521602
  • Demolli, H., Dokuz, A. S., Ecemis, A., & Gokcek, M. (2019). Wind power forecasting based on daily wind speed data using machine learning algorithms. Energy Conversion and Management, 198, 111823. https://doi.org/10.1016/j.enconman.2019.111823
  • Farrok, O., Ahmed, K., Tahlil, A. D., Farah, M. M., Kiran, M. R., & Islam, M. R. (2020). Electrical power generation from the oceanic wave for sustainable advancement in renewable energy technologies. Sustainability, 12(6), 2178. https://doi.org/10.3390/su12062178
  • Gurumoorthy, K., & Balaraman, S. (2023). Controlling the Speed of renewable-sourced DC drives with a series compensated DC to DC converter and sliding mode controller. Automatika, 64(1), 114–126. https://doi.org/10.1080/00051144.2022.2118099
  • Li, D., Zhang, S., & Xiao, Y. (2020). Interval optimization-based optimal design of distributed energy resource systems under uncertainties. Energies, 13(13), 3465. https://doi.org/10.3390/en13133465
  • Luo, F. L., & Ye, H. (2016). Advanced dc/dc converters. CRC Press. https://doi.org/10.1201/9781315393780
  • Manual on Energy Conservation in Textile Cluster. PDF.
  • Narciso, D. A., & Martins, F. G. (2020). Application of machine learning tools for energy efficiency in industry: A review. Energy Reports, 6, 1181–1199. https://doi.org/10.1016/j.egyr.2020.04.035
  • Nguyen, X. P., & Hoang, A. T. (2020). The flywheel energy storage system: An effective solution to accumulate renewable energy. In 6th International Conference on Advanced Computing and Communication Systems (ICACCS) (pp. 1322–1328). https://doi.org/10.1109/ICACCS48705.2020.9074469
  • Punnachaiya, S., Kovitcharoenkul, P., & Thong-Aram, D. (2010). Development of low grade waste heat thermoelectric power generator. Songklanakarin Journal of Science & Technology, 32(3), 307–313.
  • Puri, V., Jha, S., Kumar, R., Priyadarshini, I., Hoang Son, L., Abdel-Basset, M., Elhoseny, M., & Viet Long, H. (2019). A hybrid artificial intelligence and internet of things model for generation of renewable resource of energy. IEEE Access, 7, 111181–111191. https://doi.org/10.1109/ACCESS.2019.2934228
  • Raghavendra, K. V. G., Zeb, K., Muthusamy, A., Krishna, T. N. V., Kumar, S. V. S. V. P., Kim, D.-H., Kim, M.-S., Cho, H.-G., & Kim, H.-J. (2019). A comprehensive review of DC–DC converter topologies and modulation strategies with recent advances in solar photovoltaic systems. Electronics, 9(1), 31. https://doi.org/10.3390/electronics9010031
  • Safaei, M., Sodano, H. A., & Anton, S. R. (2019). A review of energy harvesting using piezoelectric materials: State-of-the-art a decade later (2008–2018). Smart Materials and Structures, 28(11), 113001. https://doi.org/10.1088/1361-665X/ab3be2
  • Saravanan, K., & Albert, J. R. (2023). Optimizing energy utilization in the weaving industry: Advanced electrokinetic solutions with modified piezo matrix and super lift luo converter. Electric Power Components and Systems, 1–27. https://doi.org/10.1080/15325008.2023.2262458
  • Saravanan, K., & Ramaswamy, A. (2022). Feasibility analysis for sustainable energy generation from medium and large-scale industries. In 2022 International Conference on Computer, Power and Communications (ICCPC) (pp. 468–473), December. IEEE. https://doi.org/10.1109/ICCPC55978.2022.10072116
  • Saravanan, K., & Ramaswamy, A. (2022). Simulation of power optimum circuits for 15*(3 × 3) piezo array installation. In 2022 International Conference on Computer, Power and Communications (ICCPC) (pp. 137–142), December. IEEE. https://doi.org/10.1109/ICCPC55978.2022.10072170
  • Saravanan, K., & Ramaswamy, A. (2023). Simulative study of super lift luo converter for industrial uni-directional open-wheel energy harvesting system. In 2023 Fifth International Conference on Electrical, Computer and Communication Technologies (ICECCT) (pp. 1–5), February. IEEE. https://doi.org/10.1109/ICECCT56650.2023.10179753
  • Saravanan, K., & Ramaswamy, A. (2023). Electro-kinetic energy extraction from civil machinery vehicles by using electromagnetic inductive loop and ultra lift luo converter. In 2023 IEEE Renewable Energy and Sustainable E-Mobility Conference (RESEM) (pp. 1–4), May. IEEE. https://doi.org/10.1109/RESEM57584.2023.10236280
  • Sarker, M. R., Julai, S., Sabri, M. F., Said, S. M., Islam, M. M., & Tahir, M. (2019). Review of piezoelectric energy harvesting system and application of optimization techniques to enhance the performance of the harvesting system. Sensors and Actuators A: Physical, 300, 111634. https://doi.org/10.1016/j.sna.2019.111634
  • Shen, F., Zhao, L., Du, W., Zhong, W., & Qian, F. (2020). Large-scale industrial energy systems optimization under uncertainty: A data-driven robust optimization approach. Applied Energy, 259, 114199. https://doi.org/10.1016/j.apenergy.2019.114199
  • Sun, J., Ruze, N., Zhang, J., Shi, J., & Shen, B. (2021). Capacity planning and optimization for integrated energy system in industrial park considering environmental externalities. Renewable Energy, 167, 56–65. https://doi.org/10.1016/j.renene.2020.11.045
  • Szarka, G. D., Stark, B. H., & Burrow, S. G. (2011). Review of power conditioning for kinetic energy harvesting systems. IEEE Transactions on Power Electronics, 27(2), 803–815. https://doi.org/10.1109/TPEL.2011.2161675
  • Wang, R. Q., Jiang, L., Wang, Y. D., & Roskilly, A. P. (2020). Energy saving technologies and mass-thermal network optimization for decarbonized iron and steel industry: A review. Journal of Cleaner Production, 274, 122997. https://doi.org/10.1016/j.jclepro.2020.122997
  • Zeng, P., & Khaligh, A. (2012). A permanent-magnet linear motion driven kinetic energy harvester. IEEE Transactions on Industrial Electronics, 60(12), 5737–5746. https://doi.org/10.1109/TIE.2012.2229674
  • Zhang, F., Yu, J., Si, Y., & Ding, B. (2023). Meta-aerogel ion motor for nanofluid osmotic energy harvesting. Advanced Materials (Deerfield Beach, Fla.), 35(38), e2302511. https://doi.org/10.1002/adma.202302511
  • Zhou, J., Zhang, Z., Li, X., & Yang, B. (2023). Bio-inspired, biodegradable, and fluffy 3D PLA fibrous sponges with dynamic fractal nano-sweepers for on-demand oil/water separation. Chemical Engineering Journal, 477, 146953. https://doi.org/10.1016/j.cej.2023.146953

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.