53
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Tuning drafting zone parameters for polyester yarn within a ring spinning system: modeling and optimization

, ORCID Icon, &
Received 01 Dec 2023, Accepted 09 Jun 2024, Published online: 21 Jun 2024

References

  • Abd-Elhamied, M. R., Hashima, W. A., ElKateb, S., Elhawary, I., & El-Geiheini, A. (2022). Prediction of cotton yarn’s characteristics by image processing and ann. Alexandria Engineering Journal, 61(4), 3335–3340. https://doi.org/10.1016/j.aej.2021.08.057
  • Ahmad, S., Rasheed, A., Afzal, A., & Ahmad, F. (2017). Advanced textile testing techniques. CRC Press.
  • Ahmed, S., Syduzzaman, M., Mahmud, M. S., Ashique, S., & Rahman, M. M. (2015). Comparative study on ring, rotor and air-jet spun yarn. European Scientific Journal, 3, 11. https://eujournal.org/index.php/esj/article/view/5017
  • Amor, N., Noman, M. T., Petru, M., & Sebastian, N. (2022). Comfort evaluation of Zno coated fabrics by artificial neural network assisted with golden eagle optimizer model. Scientific Reports, 12(1), 6350. https://doi.org/10.1038/s41598-022-10406-6
  • Basheer, I. A., & Hajmeer, M. (2000). Artificial neural networks: Fundamentals, computing, design, and application. Journal of Microbiological Methods, 43(1), 3–31. https://doi.org/10.1016/s0167-7012(00)00201-3
  • Buharali, G., & Omeroglu, S. (2019). Comparative study on carded cotton yarn properties produced by the conventional ring and new modified ring spinning system. Fibres & Textiles in Eastern Europe, 27, 45–51. https://doi.org/10.5604/01.3001.0012.9986
  • Carley, K. M., Kamneva, N. Y., & Reminga, J. (2004). Response surface methodology. Carnegie Mellon University, School of Computer Science, Institute for.
  • Chakrabortty, A., Hasan, M. Z., Ghosh, J., & Redwanul, M. (2020). Impact of front and back roller shore hardness on the quality of cotton carded yarn in ring spinning frame. Trends Textile Eng. Fashion Technol, 5(5), 682–686. https://doi.org/10.31031/TTEFT.2020.05.000625
  • Chakraborty, S., & Diyaley, S. (2018). Multi-objective optimization of yarn characteristics using evolutionary algorithms: A comparative study. Journal of the Institution of Engineers (India): Series E, 99(2), 129–140. https://doi.org/10.1007/s40034-018-0121-8
  • Chambers, L. D. (2000). The practical handbook of genetic algorithms: Applications. Chapman and Hall/CRC.
  • Cheng, L., & Adams, D. L. (1995). Yarn strength prediction using neural networks: Part i: Fiber properties and yarn strength relationship. Textile Research Journal,65(9), 495–500. https://doi.org/10.1177/004051759506500901
  • Cui, Y., Song, H., Cheng, L., Deng, W., & Ji, Y. (2021). Experimental study of a modified drafting system based on the ring spinning frame. Textile Research Journal, 91(13–14), 1486–1496. https://doi.org/10.1177/0040517520984977
  • Dan, P. K., Basu, S., & Hasanuzzaman. (2015). Optimization of ring-spinning process parameters using response surface methodology. The Journal of the Textile Institute, 106(5), 510–522. https://doi.org/10.1080/00405000.2014.929250
  • Das, S., Ghosh, A., Majumdar, A., & Banerjee, D. (2013). Yarn engineering using hybrid artificial neural network-genetic algorithm model. Fibers and Polymers, 14(7), 1220–1226. https://doi.org/10.1007/s12221-013-1220-2
  • Dashti, M., Derhami, V., & Ekhtiyari, E. (2014). Yarn tenacity modeling using artificial neural networks and development of a decision support system based on genetic algorithms. Journal of AI and Data Mining, 1(2), 73–78. https://doi.org/10.22044/jadm.2014.187
  • Davim, J. P. (2012). Statistical and computational techniques in manufacturing. Springer Science & Business Media.
  • Davim, J. P., & Aveiro, P. (2016). Design of experiments in production engineering. Springer.
  • Dutka, A. F., & Hansen, H. H. (1991). Fundamentals of data normalization. Addison-Wesley Longman Publishing Co., Inc.
  • Eyasu, F., Sakthivel, S., & Bewuket, T. (2018). Effect of spinning top front roller rubber cots shore hardness on yarn quality. International Journal of Industrial Engineering, 1(2), 7–14. http://hdl.handle.net/123456789/8228
  • Farooq, A., Nayab, K., Irshad, F., & Nasir, U. (2023). Predictive modeling of yarn quality at ring spinning machine using resilient back propagation neural networks. Tekstil ve Konfeksiyon, 33(1), 9–14. https://doi.org/10.32710/tekstilvekonfeksiyon.904406
  • Ghosh, A., Das, S., & Banerjee, D. (2013). Multi objective optimization of yarn quality and fibre quality using evolutionary algorithm. Journal of the Institution of Engineers (India): Series E, 94(1), 15–21. https://doi.org/10.1007/s40034-013-0015-8
  • Goldberg, D. E. (1989). Cenetic algorithms in search optimization, machine learning. Addison-Wesley.
  • Guha, A., Chattopadhyay, R., & Jayadeva, (2001). Predicting yarn tenacity: A comparison of mechanistic, statistical, and neural network models. Journal of the Textile Institute, 92(2), 139–145. https://doi.org/10.1080/00405000108659564
  • Haghdoost, F., Razbin, M., Bahrami, H., Barzin, J., & Ghaee, A. (2022). Modeling and optimization of the core-shell nanofibrous composite mat as a scaffold via hybrid models. Journal of Industrial Textiles, 52, 152808372211124. https://doi.org/10.1177/15280837221112406
  • Haghighat, E., Johari, M. S., Etrati, S. M., & Tehran, M. A. (2012). Study of the hairiness of polyester-viscose blended yarns. Part iii-predicting yarn hairiness using an artificial neural network. Fibres & Textiles in Eastern Europe, 1(20), 90. https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BPW7-0021-0076
  • Hamidi, F., Baghani, A. N., Kasraee, M., Salari, M., & Mehdinejad, M. H. (2023). Modeling, optimization and efficient use of MMT k10 nanoclay for pb (ii) removal using RSM, ann and GA. Scientific Reports, 13(1), 8434. https://doi.org/10.1038/s41598-023-35709-0
  • Hatami, O., Sayadi, D., Razbin, M., & Adibi, H. (2022). Optimization of grinding parameters of tool steel by the soft computing technique. Computational Intelligence and Neuroscience, 2022, 3042131–3042117. https://doi.org/10.1155/2022/3042131
  • Hatamvand, M., Mirjalili, S. A., Fattahi, S., Bashir, T., & Skrifvars, M. (2017). Optimum drafting conditions of polyester and viscose blend yarns. Autex Research Journal, 17(3), 213–218. https://doi.org/10.1515/aut-2016-0016
  • Ishtiaque, S. M., Das, A., & Niyogi, R. (2006). Optimization of fiber friction, top arm pressure and roller setting at various drafting stages. Textile Research Journal, 76(12), 913–921. https://doi.org/10.1177/0040517506067331
  • Ishtiaque, S., Rengasamy, R., & Ghosh, A. (2004). Optimization of ring frame process parameters for better yam quality and production. NISCAIR-CSIR, India. http://nopr.niscpr.res.in/handle/123456789/24624.
  • Karthik, T., & Murugan, R. (2016). Optimization of drafting zone variables in ring spinning for the production of cotton/milkweed blended yarns. Indian Journal of Fibre & Textile Research, 2, 121–128. https://doi.org/10.56042/ijftr.v41i2.6041
  • Kheirkhah Barzoki, P., Vadood, M., & Safar Johari, M. (2018). Multi-objective optimization of rotorcraft compact spinning core-spun yarn properties. Journal of Textiles and Polymers, 1(6), 47–53. https://www.sid.ir/paper/335782/en
  • Kheirkhah, B. P., Vadood, M., & Safar, J. M. (2016). Modeling the properties of core-compact spun yarn using artificial neural network.
  • Kouchehbaghi, N. H., Sohrabi, M., Razbin, M., Daryakenari, A. A., Abbasi, M., & Bahrami, S. H. (2023). Soft computing procedure to optimize the electrospinning parameters of polyacrylonitrile nanofibrous air filter. The Journal of the Textile Institute, 1–13. https://doi.org/10.1080/00405000.2023.2263678
  • Kozlowski, R. M., & Mackiewicz-Talarczyk, M. (2020). Handbook of natural fibres: Volume 1: Types, properties and factors affecting breeding and cultivation. Woodhead Publishing.
  • Lawrence, C. A. (2003). Fundamentals of spun yarn technology. CRC Press.
  • Lawrence, C. A. (2010). Advances in yarn spinning technology. Elsevier.
  • Maheswaran, R., & Srinivasan, V. (2019). Modal–cotton fibre blend ratio and ring frame parameter optimisation through the taguchi method. Autex Research Journal, 19(1), 86–96. https://doi.org/10.1515/aut-2018-0036
  • Majumdar, A., Jindal, A., Arora, S., & Bajya, M. (2022). Hybrid neuro-genetic machine learning models for the engineering of ring-spun cotton yarns. Journal of Natural Fibers, 19(16), 15164–15175. https://doi.org/10.1080/15440478.2022.2071375
  • Majumdar, P. K., & Majumdar, A. (2004). Predicting the breaking elongation of ring spun cotton yarns using mathematical, statistical, and artificial neural network models. Textile Research Journal, 74(7), 652–655. https://doi.org/10.1177/004051750407400717
  • Malik, S. A., Farooq, A., Gereke, T., & Cherif, C. (2016). Prediction of blended yarn evenness and tensile properties by using artificial neural network and multiple linear regression. Autex Research Journal, 16(2), 43–50. https://doi.org/10.1515/aut-2015-0018
  • Marwala, T., & Leke, C. A. (2019). Handbook of machine learning: Volume 2: Optimization and decision making. World Scientific.
  • Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (2016). Response surface methodology: Process and product optimization using designed experiments. John Wiley & Sons.
  • Nielsen, M. A. (2015). Neural networks and deep learning. Determination Press.
  • Nisbet, R., Elder, J., & Miner, G. D. (2009). Handbook of statistical analysis and data mining applications. Academic Press.
  • Popa, A., Bucevschi, A., Pustianu, M., Manea, L. R., & Sandu, I. (2016). Mathematic model of the spinning process of a wool yarn. Significance, 1, x2. https://www.revmaterialeplastice.ro/Articles.asp?ID=4663
  • Razbin, M., Avanaki, M. J., & Jeddi, A. A. A. (2023). Application of artificial neural network and full factorial method to predict the poisson’s ratio of double core helical auxetic yarn. The Journal of the Textile Institute, 114(2), 198–206. https://doi.org/10.1080/00405000.2022.2026567
  • Razbin, M., Jamshidi Avanaki, M., Jeddi, A. A. A., & Dabiryan, H. (2022). A systematic study on the predictability of different methods to predict the maximum Poisson’s ratio of helical auxetic yarn. The Journal of the Textile Institute, 113(1), 90–100. https://doi.org/10.1080/00405000.2020.1863570
  • Saville, B. (1999). Physical testing of textiles. Elsevier.
  • Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding machine learning: From theory to algorithms. Cambridge University Press.
  • Sohrabi, M., Razbin, M., Pourtavvaf, M., Bagherzadeh, R., & Mehdipour Mirmahale, M. (2022). Exercising hybrid model to design an optimized electrospun polyamide-6 nanofibrous mat for air filtration applications. The Journal of the Textile Institute, 114(11), 1667–1681. https://doi.org/10.1080/00405000.2022.2145440
  • Üreyen, M. E., & Gürkan, P. (2008). Comparison of artificial neural network and linear regression models for prediction of ring spun yarn properties. I. Prediction of yarn tensile properties. Fibers and Polymers, 9(1), 87–91. https://doi.org/10.1007/s12221-008-0014-4
  • Üreyen, M. E., & Gürkan, P. (2008). Comparison of artificial neural network and linear regression models for prediction of ring spun yarn properties. Ii. Prediction of yarn hairiness and unevenness. Fibers and Polymers, 9(1), 92–96. https://doi.org/10.1007/s12221-008-0015-3
  • Vadood, M., Kheirkhah Barzoki, P., & Safar Johari, M. (2017). Multi objective optimization of rotorcraft compact spinning system using fuzzy-genetic model. The Journal of the Textile Institute, 108(12), 2166–2172. https://doi.org/10.1080/00405000.2017.1316178
  • Werner, K. (2014). The Rieter manual of spinning volume 4-ring spinning. Rieter Company.
  • Yagawa, G., & Oishi, A. (2021). Computational mechanics with neural networks. Springer.
  • Yeung, D. S., Cloete, I., Shi, D., & Ng, W. w (2010). Sensitivity analysis for neural networks. Springer.
  • Yin, R., Ling, Y., Fisher, R., Chen, Y., Li, M., Mu, W., & Huang, X. (2021). Viable approaches to increase the throughput of ring spinning: A critical review. Journal of Cleaner Production, 323, 129116. https://doi.org/10.1016/j.jclepro.2021.129116
  • Yin, R., Xiang, Y., Zhang, Z., Tao, X., Gluck, J., Chiu, K., & Lam, W. (2021). Cleaner production of mulberry spun silk yarns via a shortened and gassing-free production route. Journal of Cleaner Production, 278, 123690. https://doi.org/10.1016/j.jclepro.2020.123690
  • Zhu, R., & Ethridge, M. D. (1997). Predicting hairiness for ring and rotor spun yarns and analyzing the impact of fiber properties. Textile Research Journal, 67(9), 694–698. https://doi.org/10.1177/004051759706700909

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.