31
Views
0
CrossRef citations to date
0
Altmetric
Report

Cross-tuck honeycomb based 3D weft knitted auxetic structures with enhanced adaptability/size changing capability & thermo-physiological comfort properties

, , , , & ORCID Icon
Received 11 Oct 2023, Accepted 25 Jun 2024, Published online: 10 Jul 2024

References

  • Abbas, A., Anas, M. S., & Azam, Z. (2023). In vitro experimental study on effect of fiber denier, yarn doubling, and specialty treatments on physical and thermal behaviors of knitted sports socks. Journal of Engineered Fibers and Fabrics 18. https://doi.org/10.1177/15589250221148917
  • Akter, S., Al Faruque, A., & Islam, M. (2017). Effect of stitch length on different properties of plain single jersey fabric. Fibers and Polymers, 7, 71–75.
  • Alderson, K. L., and A., Alderson. (2007). Auxetic materials. Journal of Aerospace Engineering, 221(4), 565–575.
  • Anas, M. S., Awais, H., Ali Hamdani, S. T., Shaker, K., Azam, Z., & Nawab, Y. (2022). Investigating the thermo-physiological comfort properties of weft-knitted smart structures having a negative Poisson’s ratio. Advances in Materials Science and Engineering, 2022, 1–14. https://doi.org/10.1155/2022/1896634
  • Anas, M. S., Azam, Z., Waqas, M., & Gull, Z. (2022). Investigate the effect of inlaid yarn on the mechanical properties and dimension stability of the weft-knitted double jersey structures for protective application. Journal of Engineered Fibers and Fabrics, 17, 155892502210961. https://doi.org/10.1177/15589250221096147
  • Ashraf, W., Nawab, Y., Maqsood, M., Khan, H., Awais, H., Ahmad, S., Ashraf, M., & Ahmad, S. (2015). Development of seersucker knitted fabric for better comfort properties and aesthetic appearance. Fibers and Polymers, 16(3), 699–701. https://doi.org/10.1007/s12221-015-0699-0
  • Čiukas, R., Abramavičiute, J., & Kerpauskas, P. (2011). Investigation of the thermal properties of socks knitted from yarns with peculiar properties, part II: Thermal resistance of socks knitted from natural and stretch yarns. Fibres and Textiles in Eastern Europe, 86(3), 64–68.
  • Ertugrul, S., & Ucar, N. (2000). Predicting bursting strength of cotton plain knitted fabrics using intelligent techniques. Textile Research Journal, 70(10), 845–851. https://doi.org/10.1177/004051750007001001
  • Evans, K. E., Nkansah, M. A., & Hutchinson, I. J. (1994). Auxetic foams: Modelling negative Poisson’s ratios. Acta Metallurgica et Materialia, 42(4), 1289–1294. https://doi.org/10.1016/0956-7151(94)90145-7
  • Gonçalves, C., Magalhães, R., Rana, S., Fangueiro, R., Nunes, J., & Dias, G. (2018). Novel high performance auxetic fibrous structures for composite reinforcement. IOP Conference Series: Materials Science and Engineering, 406(1), 12046. https://doi.org/10.1088/1757-899X/406/1/012046
  • Grima, J. N., & Evans, K. E. (2000). Auxetic behavior from rotating squares. Journal of Materials Science Letters, 19(17), 1563–1565. https://doi.org/10.1023/A:1006781224002
  • Hashan, M., Hasan, K. M. F., & Khandaker, F. R. (2017). Functional properties improvement of socks items using different types of yarn. International Journal of Textile Science, 6(2), 34–42. https://doi.org/10.5923/j.textile.20170602.02
  • Hassan, T., Khan, M. Q., Salam, A., Hassan, N., Raza, A., Bukhsh, N., Javed, Z., & Kim, I. S. (2020). The assessment of finishing properties on the mass per unit area, pilling, bursting strength, and wicking behavior of polyester weft-knitted jersey fabric. Coatings, 10(8), 723. https://doi.org/10.3390/coatings10080723
  • Hu, H., Wang, Z. & Liu, S. (2011). Development of auxetic fabrics using flat knitting technology. Textile Research Journal, 81(14), 1493–1502. https://doi.org/10.1177/0040517511404594
  • Hu, H., Zhang, M., & Liu, Y. (2019). Auxetic textiles. Auxetic Textiles, 1–358. https://doi.org/10.1016/C2016-0-04399-1
  • Iftekhar, H., Khan, R. M. W. U., Nawab, Y., Hamdani, T., & Panchal, S. (2020). Numerical analysis of binding yarn float length for 3D auxetic structures. Physica Status Solidi (b), 257(10), 2000440. https://doi.org/10.1002/pssb.202000440
  • Improved of Fabrics. (2004). Shrinkage performance of no. 919. https://www.cottoninc.com/wp-content/uploads/2017/12/ISP-1009-Guide-to-Improved-Shrinkage-Performance-of-Cotton-Fabrics.pdfthis is a full link of the data.
  • Liu, Y., & Hu, H. (2010). A review on auxetic structures and polymeric materials. Scientific Research and Essays – Academic Journals, 5(10), 1052–1063.
  • Luan, K., West, A., Denhartog, E., & Mccord, M. (2019). Auxetic deformation of the weft-knitted miura-ori fold. Textile Research Journal. 90(5–6), 617–630. https://doi.org/10.1177/0040517519877468
  • Mansoor, T., Hes, L., Bajzik, V., & Noman, M. T. (2020). Novel method on thermal resistance prediction and thermo-physiological comfort of socks in a wet state. Textile Research Journal, 90(17-18), 1987–2006. https://doi.org/10.1177/0040517520902540
  • Mansoor, T., Hes, L., Skenderi, Z., Siddique, H. F., Hussain, S., & Javed, A. (2019). Effect of preheat setting process on heat, mass and air transfer in plain socks. Journal of the Textile Institute, 110(2), 159–170. https://doi.org/10.1080/00405000.2018.1523990
  • Nazir, M., Shaker, K., Nawab, Y., & Hussain, R. (2019). Performance of novel auxetic woven fabrics produced using helical auxetic yarn. Materials Research Express, 6(8), 085703. https://doi.org/10.1088/2053-1591/ab1a7e
  • Nguy, H., R. Fangueiro, F. Ferreira., & Q.T. Nguy. (2023). Auxetic materials and structures for potential defense applications: An overview and recent developments. Textile Research Journal. 93 (23–24), 5268–5306. https://doi.org/10.1177/00405175231193433
  • Özdil, N. (2008). A study on thermal comfort properties of the socks. EÜni̇Versi̇Tesi̇Teksti̇l VeKonfeksi̇yoDergi̇Si̇, 18(2), 154–158.
  • Ozdil, N., & Anand, S. (2014). Recent developments in textile materials and products used for activewear and sportwear. Electronic Journal of Textile Technologies, 8(3), 68–83. [http://teknolojikarastirmalar.com/pdf/tr/04_2014_8_3_1169_1947.pdf
  • Pavko-Čuden, A., & Rant, D. (2015). Auxetic materials: Functional materials and structures from lateral thinking. Advanced Materials. 12(9), 617–628. https://doi.org/10.1002/(SICI)1521-4095(200005)12:9<617::AID-ADMA617>3.0.CO;2-3
  • Pavko-Čuden, A., Rant, D., & Pavko-Cuden, A. (2023). Foldable weft knitted structures with auxetic potential. https://www.researchgate.net/publication/278410260
  • Rant, D., Ciobanu, R., Blaga, M., & Pavko-Cuden, A. (2014). Compression of foldable links-links knitted structures. Textile and Apparel, 24(4), 349–355. https://dergipark.org.tr/en/pub/tekstilvekonfeksiyon/issue/23646/251883
  • Scarpa, F., & Smith, F. C. (2004). Passive and MR fluid-coated auxetic PU foam – Mechanical, acoustic, and electromagnetic properties. Journal of Intelligent Material Systems and Structures, 15(12), 973–979. https://doi.org/10.1177/1045389X04046610
  • Smith, C. W., Grima, J. N., & Evans, K. E. (2000). A novel mechanism for generating auxetic behaviour in reticulated foams: Missing rib foam model. Acta Materialia, 48(17), 4349–4356. https://doi.org/10.1016/S1359-6454(00)00269-X
  • Steffens, F., Rana, S., & Fangueiro, R. (2016). Development of novel auxetic textile structures using high performance fibres. JMADE, 106, 81–89. https://doi.org/10.1016/j.matdes.2016.05.063
  • Thermal conductivity of common materials and gases. (n.d.). https://neutrium.net/heat-transfer/thermal-conductivity-of-common-materials/
  • Wang, Z., & Hu, H. (2014). 3D auxetic warp-knitted spacer fabrics. Physica Status Solidi (b), 251(2), 281–288. https://doi.org/10.1002/pssb.201384239
  • Wang, Z., & Hu, H. (2014). Auxetic materials and their potential applications in textiles. Textile Research Journal, 84(15), 1600–1611. https://doi.org/10.1177/0040517512449051
  • Wang, Z., & Hu, H. (2017). Tensile and forming properties of auxetic warp-knitted spacer fabrics. Textile Research Journal, 87(16), 1925–1937. https://doi.org/10.1177/0040517516660889
  • Wei, G., & Edwards, S. F. (1998). Poisson ratio in composites of auxetics. Physical Review E, 58(5), 6173–6181. https://doi.org/10.1103/PhysRevE.58.6173
  • Wu, Z., He, C., Han, W., Song, J., Li, H., Zhang, Y., Jing, X., & Wu, W. (2020). Exposure pathways, levels and toxicity of polybrominated diphenyl ethers in humans: A review. Environmental Research, 187, 109531. https://doi.org/10.1016/j.envres.2020.109531
  • Yang, W., Li, Z.-M., Shi, W., Xie, B.-H., & Yang, M.-B. (2004). Review on auxetic materials. Journal of Materials Science, 39(10), 3269–3279. https://doi.org/10.1023/B:JMSC.0000026928.93231.e0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.