0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Fully woven textile-based closed microfluidic system design

ORCID Icon, , , , &
Received 01 Aug 2023, Accepted 03 Jul 2024, Published online: 18 Jul 2024

References

  • Bao, N., Zhang, Q., Xu, J.-J., & Chen, H.-Y. (2005). Fabrication of poly(dimethylsiloxane) microfluidic system based on masters directly printed with an office laser printer. Journal of Chromatography. A, 1089(1–2), 270–275. https://doi.org/10.1016/j.chroma.2005.07.001
  • Bartholomeusz, D. A., Boutte, R. W., & Andrade, J. D. (2005). Xurography: Rapid prototyping of microstructures using a cutting plotter. Journal of Microelectromechanical Systems, 14(6), 1364–1374. https://doi.org/10.1109/JMEMS.2005.859087
  • Berthier, J., Brakke, K. A., Gosselin, D., Navarro, F., Belgacem, N., & Chaussy, D. (2016). Spontaneous capillary flow in curved, open microchannels. Microfluidics and Nanofluidics, 20(7), 100. https://doi.org/10.1007/s10404-016-1766-6
  • Bhandari, P., Narahari, T., & Dendukuri, D. (2011). Fab-Chips”: a versatile, fabric-based platform for low-cost, rapid and multiplexed diagnostics. Lab on a Chip, 11(15), 2493–2499. https://doi.org/10.1039/c1lc20373h
  • Choudhary, T., Rajamanickam, G. P., & Dendukuri, D. (2015). Woven electrochemical fabric-based test sensors (WEFTS): A new class of multiplexed electrochemical sensors. Lab on a Chip, 15(9), 2064–2072. https://doi.org/10.1039/C5LC00041F
  • Comina, G., Suska, A., & Filippini, D. (2014). PDMS lab-on-a-chip fabrication using 3D printed templates. Lab on a Chip, 14(2), 424–430. https://doi.org/10.1039/C3LC50956G
  • Effati, E., & Pourabbas, B. (2018). New portable microchannel molding system based on micro-wire molding, droplet formation studies in circular cross-section microchannel. Materials Today Communications, 16, 119–123. https://doi.org/10.1016/j.mtcomm.2018.05.006
  • Gosselin, D., Huet, M., Cubizolles, M., Rabaud, D., Belgacem, N., Chaussy, D., & Berthier, J. (2016). Viscoelastic capillary flow: The case of whole blood. AIMS Biophysics, 3(3), 340–357. https://doi.org/10.3934/biophy.2016.3.340
  • Grimes, A., Breslauer, D. N., Long, M., Pegan, J., Lee, L. P., & Khine, M. (2008). Shrinky-Dink microfluidics: Rapid generation of deep and rounded patterns. Lab on a Chip, 8(1), 170–172. https://doi.org/10.1039/B711622E
  • Guckenberger, D. J., de Groot, T. E., Wan, A. M. D., Beebe, D. J., & Young, E. W. K. (2015). Micromilling: A method for ultra-rapid prototyping of plastic microfluidic devices. Lab on a Chip, 15(11), 2364–2378. https://doi.org/10.1039/C5LC00234F
  • Hunziker, P. R., Wolf, M. P., Wang, X., Zhang, B., Marsch, S., & Salieb-Beugelaar, G. B. (2015). Construction of programmable interconnected 3D microfluidic networks. Journal of Micromechanics and Microengineering, 25(2), 025018. https://doi.org/10.1088/0960-1317/25/2/025018
  • Janasek, D., Franzke, J., & Manz, A. (2006). Scaling and the design of miniaturized chemical-analysis systems. Nature, 442(7101), 374–380. https://doi.org/10.1038/nature05059
  • Kaigala, G. V., Ho, S., Penterman, R., & Backhouse, C. J. (2007). Rapid prototyping of microfluidic devices with a wax printer. Lab on a Chip, 7(3), 384–387. https://doi.org/10.1039/b617764f
  • Khan, J. U., Sayyar, S., Paull, B., & Innis, P. C. (2020). Novel approach toward electrofluidic substrates utilizing textile-based braided structure. ACS Applied Materials & Interfaces, 12(40), 45618–45628. https://doi.org/10.1021/acsami.0c13740
  • Kim, H., Michielsen, S., & DenHartog, E. (2020). New wicking measurement system to mimic human sweating phenomena with continuous microfluidic flow. Journal of Materials Science, 55(18), 7816–7832. https://doi.org/10.1007/s10853-020-04543-4
  • Lee, K. G., Park, K. J., Seok, S., Shin, S., Kim, D. H., Park, J. Y., Heo, Y. S., Lee, S. J., & Lee, T. J. (2014). 3D printed modules for integrated microfluidic devices. RSC Advances, 4(62), 32876–32880. https://doi.org/10.1039/C4RA05072J
  • Lee, U. N., Su, X., Guckenberger, D. J., Dostie, A. M., Zhang, T., Berthier, E., & Theberge, A. B. (2018). Fundamentals of rapid injection molding for microfluidic cell-based assays. Lab on a Chip, 18(3), 496–504. https://doi.org/10.1039/C7LC01052D
  • Lee, Y., Choi, J. W., Yu, J., Park, D., Ha, J., Son, K., Lee, S., Chung, M., Kim, H.-Y., & Jeon, N. L. (2018). Microfluidics within a well: an injection-molded plastic array 3D culture platform. Lab on a Chip, 18(16), 2433–2440. https://doi.org/10.1039/C8LC00336J
  • McDonald, J. C., Duffy, D. C., Anderson, J. R., Chiu, D. T., Wu, H., Schueller, O. J. A., & Whitesides, G. M. (2000). Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis, 21(1), 27–40. https://doi.org/10.1002/(SICI)1522-2683(20000101)21:1<27::AID-ELPS27>3.0.CO;2-C
  • Meng, Q., & Chang, M. (2020). Interfacial crack propagation between a rigid fiber and a hyperelastic elastomer: Experiments and modeling. International Journal of Solids and Structures, 188–189, 141–154. https://doi.org/10.1016/j.ijsolstr.2019.10.006
  • Militky, B. K. J., Mishra, R., & Kremenakov, D. (2012). Modeling of woven fabrics geometry and properties. In H.-Y. Jeon (Ed.), Woven fabrics. InTech. https://doi.org/10.5772/38723
  • Morbioli, G. G., Speller, N. C., & Stockton, A. M. (2020). A practical guide to rapid-prototyping of PDMS-based microfluidic devices: A tutorial. Analytica Chimica Acta, 1135, 150–174. https://doi.org/10.1016/j.aca.2020.09.013
  • Morbioli, G. G., Speller, N. C., Cato, M. E., Cantrell, T. P., & Stockton, A. M. (2019). Rapid and low-cost development of microfluidic devices using wax printing and microwave treatment. Sensors and Actuators B: Chemical, 284, 650–656. https://doi.org/10.1016/j.snb.2018.12.053
  • Narahari, T., Dendukuri, D., & Murthy, S. K. (2015). Tunable electrophoretic separations using a scalable, fabric-based platform. Analytical Chemistry, 87(4), 2480–2487. https://doi.org/10.1021/ac5045127
  • Nilghaz, A., Ballerini, D. R., & Shen, W. (2013). Exploration of microfluidic devices based on multi-filament threads and textiles: A review. Biomicrofluidics, 7(5), 51501. https://doi.org/10.1063/1.4820413
  • Nilghaz, A., Hoo, S., Shen, W., Lu, X., & Chan, P. P. Y. (2018). Multilayer cell culture system supported by thread. Sensors and Actuators B: Chemical, 257, 650–657. https://doi.org/10.1016/j.snb.2017.10.186
  • Oliveira, N. M., Vilabril, S., Oliveira, M. B., Reis, R. L., & Mano, J. F. (2019). Recent advances on open fluidic systems for biomedical applications: A review. Materials Science & Engineering. C, Materials for Biological Applications, 97, 851–863. https://doi.org/10.1016/j.msec.2018.12.040
  • Salieb-Beugelaar, G. B., Liu, K., & Hunziker, P. (2018). Subtractive manufacturing of microfluidic 3D braid mixers. Advanced Engineering Materials, 20(11), 1800243. https://doi.org/10.1002/adem.201800243
  • Speller, N. C., Morbioli, G. G., Cato, M. E., Cantrell, T. P., Leydon, E. M., Schmidt, B. E., & Stockton, A. M. (2019). Cutting edge microfluidics: Xurography and a microwave. Sensors and Actuators B: Chemical, 291, 250–256. https://doi.org/10.1016/j.snb.2019.04.004
  • Stojanović, G. M., Radetić, M. M., Šaponjić, Z. V., Radoičić, M. B., Radovanović, M. R., Popović, Ž. V., & Vukmirović, S. N. (2020). A textile-based microfluidic platform for the detection of cytostatic drug concentration in sweat samples. Applied Sciences, 10(12), 4392. https://doi.org/10.3390/app10124392
  • Verma, M. K. S., Majumder, A., & Ghatak, A. (2006). Embedded template-assisted fabrication of complex microchannels in PDMS and design of a microfluidic adhesive. Langmuir: The ACS Journal of Surfaces and Colloids, 22(24), 10291–10295. https://doi.org/10.1021/la062516n
  • Viovy, J.-L., Venzac, B., Malaquin, L., & Descroix, S. (2016). ‘Composite woven fluidic device’, US10661274B2, Jul. 22, 2016 [Online]. https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2017017002
  • Wei, Y.-C., Su, S.-Y., Fu, L.-M., & Lin, C.-H. (2012). ‘Electrophoresis separation and electrochemical detection on a novel line-based microfluidic device’, 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), Paris, France: IEEE, Jan. 2012, pp. 104–107. https://doi.org/10.1109/MEMSYS.2012.6170104
  • Whitesides, G. M. (2006). The origins and the future of microfluidics. Nature, 442(7101), 368–373. https://doi.org/10.1038/nature05058
  • Xiang, N., Dai, Q., Han, Y., & Ni, Z. (2019). Circular-channel particle focuser utilizing viscoelastic focusing. Microfluidics and Nanofluidics, 23(2), 16. https://doi.org/10.1007/s10404-018-2184-8
  • Zhao, P., Liang, Y., Liu, Y., Zhao, S., Yang, M., Huo, D., & Hou, C. (2022). Hemin functionalized hybrid aerogel-enabled electrochemical chip for real-time analysis of H2O2. The Analyst, 147(17), 3822–3826. https://doi.org/10.1039/D2AN00524G

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.