Publication Cover
Vehicle System Dynamics
International Journal of Vehicle Mechanics and Mobility
Volume 52, 2014 - Issue 3
2,897
Views
258
CrossRef citations to date
0
Altmetric
Original Articles

Robust gain-scheduling energy-to-peak control of vehicle lateral dynamics stabilisation

, &
Pages 309-340 | Received 14 Jan 2013, Accepted 16 Dec 2013, Published online: 11 Feb 2014

References

  • Shladover SE. Review of the state of development of advanced vehicle control systems (AVCS). Vehicle Syst Dyn. 1995;24:551–595. doi: 10.1080/00423119508969108
  • Gordon TJ, Best MC. Lyapunov control of vehicle handling dynamics. JSAE Rev. 1999;20:453–458. doi: 10.1016/S0389-4304(99)00045-4
  • He J, Crolla DA, Levesley MC, Manning WJ. Coordination of active steering, driveline, and braking for integrated vehicle dynamics control. Proc Inst Mech Eng D J Automob Eng. 2006;220:1401–1421. doi: 10.1243/09544070JAUTO265
  • Ghike C, Shim T, Asgari J. Integrated control of wheel drive–brake torque for vehicle-handling enhancement. Proc Inst Mech Eng D J Automob Eng. 2009;223:439–457. doi: 10.1243/09544070JAUTO1032
  • Unsal C, Kachroo P. Sliding mode measurement feedback control for antilock braking systems. IEEE Trans Control Syst Technol. 1999;7:271–281. doi: 10.1109/87.748153
  • Mi C, Lin H, Zhang Y. Iterative learning control of antilock braking of electric and hybrid vehicles. IEEE Trans Veh Technol. 2005;54:486–494. doi: 10.1109/TVT.2004.841552
  • Khatun P, Bingham C, Schofield N, Mellor P. Application of fuzzy control algorithms for electric vehicle antilock braking/traction control systems. IEEE Trans Veh Technol. 2003;52:1356–1364. doi: 10.1109/TVT.2003.815922
  • Shim T, Chang S, Lee S. Investigation of sliding-surface design on the performance of sliding mode controller in antilock braking systems. IEEE Trans Veh Technol. 2008;57:747–759. doi: 10.1109/TVT.2007.905391
  • Fialho I, Balas G. Road adaptive active suspension design using linear parameter-varying gain-scheduling. IEEE Trans Control Syst Technol. 2002;10:43–54. doi: 10.1109/87.974337
  • Sun W, Zhao Y, Li J, Zhang L, Gao H. Active suspension control with frequency band constraints and actuator input delay. IEEE Trans Ind Electron. 2012;59:530–537. doi: 10.1109/TIE.2012.2183837
  • Li H, Liu H, Gao H, Shi P. Reliable fuzzy control for active suspension systems with actuator delay and fault. IEEE Trans Fuzzy Syst. 2012;20:342–357. doi: 10.1109/TFUZZ.2011.2174244
  • Du H, Sze KY, Lam J. Semi-active control of vehicle suspension with magneto-rheological dampers. J Sound Vib. 2005;283:981–996. doi: 10.1016/j.jsv.2004.05.030
  • Smith DE, Starkey JM. Effects of model complexity on the performance of automated vehicle steering controllers: controller development and evaluation. Veh Syst Dyn. 1994;23:627–645. doi: 10.1080/00423119408969078
  • Smith DE, Starkey JM. Effects of model complexity on the performance of automated vehicle steering controllers: model development, validation and comparison. Veh Syst Dyn. 1995;24:163–181. doi: 10.1080/00423119508969086
  • Dinga N, Taherib S. An adaptive integrated algorithm for active front steering and direct yaw moment control based on direct Lyapunov method. Veh Syst Dyn. 2010;48:1193–1213. doi: 10.1080/00423110903377360
  • Rajamani R, Zhu C, Alexander L. Lateral control of a backward driven front-steering vehicle. Control Eng Pract. 2003;11:531–540. doi: 10.1016/S0967-0661(02)00143-0
  • Choi SB. The design of a look-down feedback adaptive controller for the lateral control of front-wheel-steering autonomous highway vehicles. IEEE Trans Veh Technol. 2000;49:2257–2269. doi: 10.1109/25.901895
  • Guvenc BA, Guvenc L, Karaman S. Robust MIMO disturbance observer analysis and design with application to active car steering. Internat J Robust Nonlinear Control. 2010;20:873–891.
  • Abe M. Vehicle dynamics and control for improving handling and active safety: from fourwheel steering to direct yaw moment control. Proc Inst Mech Eng K, J Multi-Body Dyn. 1999;213:659–675.
  • Bunte T, Odenthal D, Aksun-Guvenc B, Guvenc L. Robust vehicle steering control design based on the disturbance observer. Ann Rev Control. 2002;26:139–149. doi: 10.1016/S1367-5788(02)80024-4
  • Manning WJ, Crolla DA. A review of yaw rate and sideslip controllers for passenger vehicles. Trans Inst Meas Control. 2007;29:117–135. doi: 10.1177/0142331207072989
  • Guvenc BA, Guvenc L, Karaman S. Robust yaw stability controller design and hardware-in-the-loop testing for a road vehicle. IEEE Trans Veh Technol. 2009;58:555–571. doi: 10.1109/TVT.2008.925312
  • Tjonnas J, Johansen TA. Stabilization of automotive vehicles using active steering and adaptive brake control allocation. IEEE Trans Control Syst Technol. 2010;18:545–558. doi: 10.1109/TCST.2009.2023981
  • Hancock MJ, Williams RA, Fina E, Best M. Yaw motion control via active differentials. Trans Inst Meas Control. 2007;29:137–157. doi: 10.1177/0142331207069489
  • Baslamisli SC, Kose IE, Anlas G. Gain-scheduled integrated active steering and differential control for vehicle handling improvement. Veh Syst Dyn. 2009;47:99–119. doi: 10.1080/00423110801927100
  • Bayar K, Wang J, Rizzoni G. Development of a vehicle stability control strategy for a hybrid electric vehicle equipped with axle motors. Proc Inst Mech Eng D J Automob Eng. 2012;226:795–814. doi: 10.1177/0954407011433396
  • Rajamani R, Tan HS, Law BK, Zhang WB. Demonstration of integrated longitudinal and lateral control for the operation of automated vehicles in platoons. IEEE Trans Control Syst Technol. 2000;8:695–708. doi: 10.1109/87.852914
  • March C, Shim T. Integrated control of suspension and front steering to enhance vehicle handling. Proc Inst Mech Eng D J Automob Eng. 2007;221:377–391. doi: 10.1243/09544070JAUTO152
  • Nagai M, Shino M, Gao F. Study on integrated control of active front steer angle and direct yaw moment. JSAE Rev. 2002;23:309–315. doi: 10.1016/S0389-4304(02)00189-3
  • Yang X, Wang Z, Peng W. Coordinated control of AFS and DYC for vehicle handling and stability based on optimal guaranteed cost theory. Veh Syst Dyn. 2009;47:57–79. doi: 10.1080/00423110701882264
  • Mashadi B, Mostaani S, Majidi M. Vehicle stability enhancement by using an active differential. Proc Inst Mech Eng I J Syst Control Eng. 2011;225:1098–1114.
  • Sawase K, Sano Y. Application of active yaw control to vehicle dynamics by utilizing driving/breaking force. JSAE Rev. 1999;20:289–295. doi: 10.1016/S0389-4304(98)00070-8
  • Canale M, Fagiano L, Ferrara A, Vecchio C. Vehicle yaw control via second-order sliding-mode technique. IEEE Trans Ind Electron. 2008;55:3908–3916. doi: 10.1109/TIE.2008.2003200
  • Canale M, Fagiano L. Comparing rear wheel steering and rear active differential approaches to vehicle yaw control. Veh Syst Dyn. 2010;48:529–546. doi: 10.1080/00423110902919055
  • Du H, Zhang N, Dong G. Stabilizing vehicle lateral dynamics with considerations of parameter uncertainties and control saturation through robust yaw control. IEEE Trans Veh Technol. 2010;59:2593–2597. doi: 10.1109/TVT.2010.2043860
  • Grigoriadis KM, Watson JT. Reduced-order H∞ and filtering via linear matrix inequalities. IEEE Trans Aerosp Electron Syst. 1997;33:1326–1338. doi: 10.1109/7.625133
  • Palhares R, Peres P. Robust filtering with guaranteed energy-to-peak performance-an LMI approach. Automatica. 2000;36:851–858. doi: 10.1016/S0005-1098(99)00211-3
  • Gao H, Wang C. Robust energy-to-peak filtering with improved LMI representation. IEE Proc-Vis Image Signal Process. 2003;150:82–89. doi: 10.1049/ip-vis:20030235
  • Liu H, Sun F, Sun Z. Reduced-order filtering with energy-to-peak performance for discrete-time Markovian jumping systems. IMA J Math Control Info. 2004;21:143–158. doi: 10.1093/imamci/21.2.143
  • Gao H, Lam J, Wang C. Robust energy-to-peak filter design for stochastic time-delay systems. Syst Control Lett. 2006;55:101–111. doi: 10.1016/j.sysconle.2005.05.005
  • Meng X, Gao H, Mou S. A new parameter-dependent approach to robust energy-to-peak filter design. Circ Syst Signal Process. 2007;26:451–471. doi: 10.1007/s00034-007-4002-z
  • Zhang L, Shi P, Boukas E, Wang C. Robust filtering for switched linear discrete time-delay systems with polytopic uncertainties. IET Control Theory Appl. 2007;1:722–730. doi: 10.1049/iet-cta:20060127
  • Xia J, Xu S, Song B. Delay-dependent filter design for stochastic time-delay systems. Syst Control Lett. 2007;56:579–587. doi: 10.1016/j.sysconle.2007.04.001
  • Wu L, Wang Z, Gao H, Wang C. H∞ and filtering for two-dimensional linear parameter-varying systems. Int J Robust Nonlinear Control. 2007;17:1129–1154. doi: 10.1002/rnc.1169
  • Yu B, Shi Y, Huang H. filtering for multirate systems based on lifted models. Circ Syst Signal Process. 2008;27:699–711. doi: 10.1007/s00034-008-9058-3
  • Yin G, Chen N, Li P. Improving handling stability performance of four-wheel steering vehicle via μ-synthesis robust control. IEEE Trans Veh Technol. 2007;56:2432–2439. doi: 10.1109/TVT.2007.899941
  • Boada MJL, Boada BL, Munoz A, Diaz V. Integrated control of front-wheel steering and front braking forces on the basis of fuzzy logic. Proc Inst Mech Eng D J Automob Eng. 2006;220:253–267. doi: 10.1243/09544070JAUTO124
  • Hac A, Bodie MO. Improvements in vehicle handling through integrated control of chassis systems. Int J Veh Des. 2002;29:23–50. doi: 10.1504/IJVD.2002.001999
  • Ting CS. An output-feedback fuzzy approach to guaranteed cost control of vehicle lateral motion. Mechatronics. 2009;19:304–312. doi: 10.1016/j.mechatronics.2008.11.009
  • Zhang H, Shi Y, Saadat Mehr A. Robust static output feedback control and remote PID design for networked motor systems. IEEE Trans Ind Electron. 2011;58:5396–5405. doi: 10.1109/TIE.2011.2107720
  • Zhang H, Shi Y, Saadat Mehr A, Huang H. Robust energy-to-peak FIR equalization for time-varying communication channels with intermittent observations. Signal Process. 2011;91:1651–1658. doi: 10.1016/j.sigpro.2011.01.011
  • Wang R, Chen Y, Feng D, Huang X, Wang J. Development and performance characterization of an electric ground vehicle with independently actuated in-wheel motors. J Power Sources. 2011;196:3962–3971. doi: 10.1016/j.jpowsour.2010.11.160
  • Stephant J, Charara A, Meizel D. Evaluation of a sliding mode observer for vehicle sideslip angle. Control Eng Pract. 2007;15:803–812. doi: 10.1016/j.conengprac.2006.04.002
  • Grip HV, Imsland L, Johansen TA, Fossen TI, Kalkkuhl JC, Suissa A. Nonlinear vehicle side-slip estimation with friction adaptation. Automatica. 2008;44:611–622. doi: 10.1016/j.automatica.2007.06.017
  • Ono E, Hosoe S, Tuan H, Doi S. Bifurcation in vehicle dynamics and robust front steering control. IEEE Trans Control Syst Technol. 1998;6:412–420. doi: 10.1109/87.668041
  • Xie L, Soh YC. Robust control of linear systems with generalized positive real uncertainty. Automatica. 1997;33:963–967. doi: 10.1016/S0005-1098(96)00247-6
  • Jiang X, Han QL. Delay-dependent robust stability for uncertain linear systems with interval time-varying delay. Automatica. 2006;42:1059–1065. doi: 10.1016/j.automatica.2006.02.019
  • Haddad WM, Bernstein DS. Controller design with regional pole constraints. IEEE Trans Autom Control. 1992;37:54–69. doi: 10.1109/9.109638
  • Zhang H, Shi Y. Parameter-dependent filtering for linear time-varying systems. Tran ASME J Dyn Sys, Meas Control. 2013;135:021006. doi: 10.1115/1.4007553
  • Zhang H, Shi Y, Saadat Mehr A. On filtering for discrete-time Takagi-Sugeno fuzzy systems. IEEE Trans Fuzzy Syst. 2012;20:396–401. doi: 10.1109/TFUZZ.2011.2175933
  • Ono E, Hosoe S, Asano K, Sugai M, Doi S. Robust stabilization of the vehicle dynamics by gain-scheduled H∞ control. Proceedings of the 1999 IEEE international conference on control applications. Hawai; 1999. p. 1679–1685.
  • Wada N, Takahashi A, Saeki M, Nishimura M. Vehicle yaw control using an active front steering system with measurements of lateral tire forces. J Robot Mechatronics. 2011;23:83–93.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.