Publication Cover
Vehicle System Dynamics
International Journal of Vehicle Mechanics and Mobility
Volume 54, 2016 - Issue 8
970
Views
24
CrossRef citations to date
0
Altmetric
Articles

Estimation of longitudinal speed robust to road conditions for ground vehicles

, , , , &
Pages 1120-1146 | Received 08 Sep 2015, Accepted 07 Apr 2016, Published online: 14 Jun 2016

References

  • Ryu J, Gerdes JC. Integrating inertial sensors with global positioning system (GPS) for vehicle dynamics control. J Dyn Syst Measure Control. 2004;126(2):243–254. doi: 10.1115/1.1766026
  • Bevly DM, Ryu J, Gerde JC. Integrating INS sensors with GPS measurements for continuous estimation of vehicle sideslip, roll, and tire cornering stiffness. IEEE Trans Intell Transp Syst. 2006;7(4):483–493. doi: 10.1109/TITS.2006.883110
  • Imsland L, Johansen TA, Fossen TI, Grip HF, Kalkkuhl JC, Suissa A. Vehicle velocity estimation using nonlinear observers. Automatica. 2006;42(12):2091–2103. doi: 10.1016/j.automatica.2006.06.025
  • Imsland L, Grip HF, Johansen TA, Fossen TI, Kalkkuhl JC, Suissa A. Nonlinear observer for vehicle velocity with friction and road bank angle adaptation–validation and comparison with an extended Kalman filter. SAE Technical Paper, Tech. Rep.; 2007.
  • Hsu Y-HJ. Estimation and control of lateral tire forces using steering torque [Ph.D. dissertation]. Stanford University; 2009.
  • Baffet G, Charara A, Dherbomez G. An observer of tire–road forces and friction for active security vehicle systems. IEEE/ASME Trans Mechatron. 12(6):651–661. doi: 10.1109/TMECH.2007.910099
  • Hsu Y-HJ, Gerdes JC. The predictive nature of pneumatic trail: tire slip angle and peak force estimation using steering torque. AVEC08, Kobe, Japan; 2008.
  • Yoon J-H, Peng H. A cost-effective sideslip estimation method using velocity measurements from two GPS receivers. IEEE Trans Veh Technol. 2014;63(6):2589–2599. doi: 10.1109/TVT.2013.2294717
  • Hac A, Simpson MD. Estimation of vehicle side slip angle and yaw rate. SAE Technical Paper, Tech. Rep.; 2000.
  • Wenzel TA, Burnham KJ, Blundell MV, Williams RA. Dual extended Kalman filter for vehicle state and parameter estimation. Veh Syst Dyn. 2006;44(2):153–171. doi: 10.1080/00423110500385949
  • Julier SJ, Uhlmann JK, Durrant-Whyte HF. A new approach for filtering nonlinear systems. IEEE proceedings of the 1995 American control conference, Seattle, WA, vol. 3; 1995. p. 1628–1632.
  • Wan E, Van Der Merwe R, et al. The unscented Kalman filter for nonlinear estimation. In: IEEE adaptive systems for signal processing, communications, and control symposium (AS-SPCC), Lake Louise, Alberta; 2000. p. 153–158.
  • Pasterkamp WR, Pacejka HB. The tyre as a sensor to estimate friction. Veh Syst Dyn. 1997;27(5–6):409–422. doi: 10.1080/00423119708969339
  • Uil R. Tyre models for steady-state vehicle handling analysis [Ph.D. dissertation]. Eindhoven University of Technology; 2007.
  • Antonov S, Fehn A, Kugi A. Unscented Kalman filter for vehicle state estimation. Veh Syst Dyn. 2011;49(9):1497–1520. doi: 10.1080/00423114.2010.527994
  • Magallan GA, De Angelo CH, Garcia GO, et al. Maximization of the traction forces in a 2wd electric vehicle. IEEE Trans Veh Technol. 2011;60(2):369–380. doi: 10.1109/TVT.2010.2091659
  • Canudas-De-Wit C, Tsiotras P. Dynamic tire friction models for vehicle traction control. Proceedings of the 38th conference on decision and control, Phoenix, AZ; 1999. p. 3746–3751.
  • Zhang X, Xu Y, Pan M, Ren F. A vehicle ABS adaptive sliding-mode control algorithm based on the vehicle velocity estimation and tyre/road friction coefficient estimations. Veh Syst Dyn. 2014;52(4):475–503. doi: 10.1080/00423114.2013.864775
  • Burckhardt M. Fahrwerktechnik Radschlupf-regelsysteme. Vogel-Verlag; 1993. p. 16.
  • Gadola M, Chindamo D, Romano M, Padula F. Development and validation of a Kalman filter-based model for vehicle slip angle estimation. Veh Syst Dyn. 2014;52(1):68–84. doi: 10.1080/00423114.2013.859281
  • Canudas-de Wit C, Petersen ML, Shiriaev A. A new nonlinear observer for tire/road distributed contact friction. Proceedings of the 42nd IEEE conference on decision and control, Maui, HI, vol. 3; 2003. p. 2246–2251.
  • Patel N, Edwards C, Spurgeon SK. Tyre–road friction estimation – a comparative study. Proc Inst Mech Eng Part D: J Autom Eng. 2008;222(12):2337–2351. doi: 10.1243/09544070JAUTO859
  • Baffet G, Charara A, Lechner D. Estimation of vehicle sideslip, tire force and wheel cornering stiffness. Control Eng Pract. 2009;17(11):1255–1264. doi: 10.1016/j.conengprac.2009.05.005
  • Hashemi E, Pirani M, Khajepour A, Fidan B, Kasaiezadeh A, Chen S, Litkouhi B. Integrated estimation structure for the tire friction forces in ground vehicles. in IEEE Conference on Advanced Intelligent Mechatronics, Banff, Canada; 2016.
  • Doumiati M, Victorino A, Lechner D, Baffet G, Charara A. Observers for vehicle tyre/road forces estimation: experimental validation. Veh Syst Dyn. 2010;48(11):1345–1378. doi: 10.1080/00423111003615204
  • Hashemi E, Kasaeizadeh A, Khajepour A, Mushchuk N, Chen S-K. Robust estimation and experimental evaluation of longitudinal friction forces in ground vehicles. Montreal: ASME IMECE; 2014.
  • Mammar S, Glaser S, Netto M. Vehicle lateral dynamics estimation using unknown input proportional-integral observers. IEEE American control conference, Minneapolis, MN; 2006. p. 6.
  • Wang Y, Bevly DM, Chen S-K. Longitudinal tire force estimation with unknown input observer. ASME 2012 5th annual dynamic systems and control conference. Fort Lauderdale, FL: American Society of Mechanical Engineers; 2012. p. 523–530.
  • Hong S, Smith T, Borrelli F, Hedrick JK. Vehicle inertial parameter identification using extended and unscented Kalman filters. 16th international IEEE conference on intelligent transportation systems (ITSC), Hague, Netherlands; 2013. p. 1436–1441.
  • Hong S, Lee C, Borrelli F, Hedrick JK. A novel approach for vehicle inertial parameter identification using a dual Kalman filter. IEEE Trans Intell Transp Syst. 2015;16(1):151–161. doi: 10.1109/TITS.2014.2329305
  • Haykin Simon E. Kalman filtering and neural networks, vol. 47. New York: John Wiley & Sons Inc.; 2004.
  • Rehm A. Estimation of vehicle roll angle. IEEE 4th international symposium on communications, control and signal processing (ISCCSP), Limassol, Cyprus; 2010. p. 1–4.
  • Pacejka HB, Besselink IJM. Magic formula tyre model with transient properties. Veh Syst Dyn. 1997;27(S1):234–249.
  • Canudas-de Wit C, Tsiotras P, Velenis E, Basset M, Gissinger G. Dynamic friction models for road/tire longitudinal interaction. Veh Syst Dyn. 2003;39(3):189–226. doi: 10.1076/vesd.39.3.189.14152
  • Wang Y, Bevly D. Longitudinal vehicle state estimation. General motors summary report, Tech. Rep.; 2010.
  • Bryson AE, Ho Y-C. Applied optimal control: optimization, estimation and control. Levittown, PA: Taylor & Francis; 1975.
  • Kumar PR, Varaiya P. Stochastic systems: estimation, identification and adaptive control. New York: Prentice-Hall, Inc.; 1986.
  • Franklin GF, Powell JD, Workman ML. Digital control of dynamic systems. Menlo Park: Addison Wesley Longman; 1998.
  • Anderson BDO, Moore JB. Detectability and stabilizability of time-varying discrete-time linear systems. SIAM J Control Optim. 1981;19(1):20–32. doi: 10.1137/0319002
  • Stengel RF. Optimal control and estimation. New York: Courier Corporation; 2012.
  • Delyon B. A note on uniform observability. IEEE Trans Autom Control. 2001;46(8):1326–1327. doi: 10.1109/9.940944
  • Bageshwar VL, Gebre-Egziabher D, Garrard WL, Georgiou TT. Stochastic observability test for discrete-time Kalman filters. J Guid Control Dyn. 2009;32(4):1356–1370. doi: 10.2514/1.38128
  • Tóth R. Modeling and identification of linear parameter-varying systems, vol. 403. Berlin Heidelberg: Springer; 2010.
  • Anderson BD, Moore JB. Optimal filtering. New York: Dover Publications; 1995.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.