Publication Cover
Vehicle System Dynamics
International Journal of Vehicle Mechanics and Mobility
Volume 54, 2016 - Issue 9
599
Views
27
CrossRef citations to date
0
Altmetric
Articles

Railway vehicle performance optimisation using virtual homologation

, , &
Pages 1177-1207 | Received 24 Sep 2015, Accepted 29 May 2016, Published online: 16 Jun 2016

References

  • Bezin Y, Funfschilling C, Kraft S, Mazzola L. Virtual testing environment tools for railway vehicle certification. Proc IMechE Part F J Rail Rapid Transit. 2015;229:755–769. doi: 10.1177/0954409715587596
  • Polach O, Böttcher A, Vannucci D, et al. Validation of simulation models in the context of railway vehicle acceptance. Proc IMechE Part F J Rail Rapid Transit. 2014;229:729–754. doi: 10.1177/0954409714554275
  • Funfschilling C, Perrin G, Sebes M, Bezin Y, Mazzola L, Nguyen-Tajan M-L. Probabilistic simulation for the certification of railway vehicles. Proc IMechE Part F J Rail Rapid Transit. 2015;229:770–781. doi: 10.1177/0954409715589395
  • Willson N, Fries R, Witte M, et al. Assessment of safety against derailment using simulation and vehicle acceptance tests: a worldwide comparison of state-of-the-art assessment methods. Vehicle Syst Dyn. 2011;49:1113–1157. doi: 10.1080/00423114.2011.586706
  • UIC 518. Testing and approval of railway vehicles from the point of view of their dynamic behaviour – Safety – Track fatigue – Running behaviour; 2009.
  • EN 14363. Railway applications – testing for the acceptance of running characteristics of railway vehicles – testing of running behaviour and stationary tests. Brussels: CENELEC European Committee for Electrotechnical Standardization; 2005.
  • Polach O, Evans J. Simulations of running dynamics for vehicle acceptance: application and validation. Int J Railway Technol. 2013;2:59–84. doi:doi:10.4203/ijrt.2.4.4.
  • Jönsson L-O, Nilstam N, Persson I. Using simulations for approval of railway vehicles: a comparison between measured and simulated track forces. Vehicle Syst Dyn. 2008;46:869–881. doi: 10.1080/00423110802037123
  • Gonçalves JC, Ambrósio JC. Road vehicle modeling requirements for optimization of ride and handling. Multibody Syst Dyn. 2005;13:3–23. doi: 10.1007/s11044-005-2528-5
  • Gonçalves J, Ambrósio J. Optimization of vehicle suspension systems for improved comfort of road vehicles using flexible multibody dynamics. Nonlinear Dynam. 2003;34:113–131. doi: 10.1023/B:NODY.0000014555.46533.82
  • Corradi R, Melzi S, Ripamonti F, Romani M. Estimation of the comfort indexes of a rail vehicle at design stage. ASME 8th Biennial Conference on Engineering Systems Design and Analysis; 2006, p. 909–915.
  • Gong D, Zhou J-S, Sun W-J. On the resonant vibration of a flexible railway car body and its suppression with a dynamic vibration absorber. J Vib Control. 2012. doi:10.1177/1077546312437435.
  • Martínez-Casas J, Mazzola L, Baeza L, Bruni S. Numerical estimation of stresses in railway axles using a train–track interaction model. Int J Fatigue. 2013;47:18–30. doi: 10.1016/j.ijfatigue.2012.07.006
  • Bruni S, Vinolas J, Berg M, Polach O, Stichel S. Modelling of suspension components in a rail vehicle dynamics context. Vehicle Syst Dyn. 2011;49:1021–1072. doi: 10.1080/00423114.2011.586430
  • Eickhoff BM, Evans JR, Minnis AJ. A review of modelling methods for railway vehicle suspension components. Vehicle Syst Dyn. 1995;24:469–496. doi: 10.1080/00423119508969105
  • Alfi S, Bruni S, Mazzola L. Impact of suspension component modelling on the accuracy of rail vehicle dynamics simulation. Procedings of the 11th Mini conference on Vehicle System Dynamics, Identification and Anomalies, Budapest, Hungary; 2008.
  • Nikravesh PE. Computer-aided analysis of mechanical systems. Englewood Cliffs, NJ: Prentice-Hall; 1988.
  • Flores P, Ambrósio J, Claro J, Lankarani H, Koshy C. Lubricated revolute joints in rigid multibody systems. Nonlinear Dyn. 2009;56:277–295. doi: 10.1007/s11071-008-9399-2
  • Ambrósio J, Verissimo P. Improved bushing models for general multibody systems and vehicle dynamics. Multibody Syst Dyn. 2009;22:341–365. doi: 10.1007/s11044-009-9161-7
  • Pombo J, Ambrósio J. An alternative method to include track irregularities in railway vehicle dynamic analyses. Nonlinear Dyn. 2012;68:161–176. doi: 10.1007/s11071-011-0212-2
  • Piotrowski J, Chollet H. Wheel–rail contact models for vehicle system dynamics including multi-point contact. Vehicle Syst Dyn. 2005;43:455–483. doi: 10.1080/00423110500141144
  • Knothe K. History of wheel/rail contact mechanics: from Redtenbacher to Kalker. Vehicle Syst Dyn. 2008;46:9–26. doi: 10.1080/00423110701586469
  • Enblom R. Deterioration mechanisms in the wheel–rail interface with focus on wear prediction: a literature review. Vehicle Syst Dyn. 2009;47:661–700. doi: 10.1080/00423110802331559
  • Alonso A, Guiral A, Giménez JG. Wheel-rail contact: theoretical and experimental analysis. Int J Railway Technol. 2013;2:15–32. doi:doi:10.4203/ijrt.2.4.2.
  • Sichani MS, Enblom R, Berg M. Non-elliptic wheel-rail contact modelling in vehicle dynamics simulation. Int J Railway Technol. 2014;3:77–96. doi:doi:10.4203/ijrt.3.3.5.
  • Iwnicki S. Handbook of railway vehicle dynamics. London: Taylor & Francis; 2006.
  • Pombo J, Ambrósio J, Silva M. A new wheel-rail contact model for railway dynamics. Vehicle Syst Dyn. 2007;45:165–189. doi: 10.1080/00423110600996017
  • Lankarani HM, Nikravesh PE. A contact force model with hysteresis damping for impact analysis of multibody systems. J Mech Design. 1990;112:369–376. doi: 10.1115/1.2912617
  • Polach O. A fast wheel-rail forces calculation computer code. Vehicle Syst Dyn. 1999;33:728–739.
  • Pombo J, Ambrósio J. Application of a wheel-rail contact model to railway dynamics in small radius curved tracks. Multibody Syst Dyn. 2008;19:91–114. doi: 10.1007/s11044-007-9094-y
  • Meli E, Ridolfi A. An innovative wheel–rail contact model for railway vehicles under degraded adhesion conditions. Multibody Syst Dyn. 2015;33:285–313. doi: 10.1007/s11044-013-9405-4
  • Meli E, Pugi L, Ridolfi A. An innovative degraded adhesion model for multibody applications in the railway field. Multibody Syst Dyn. 2014;32:133–157. doi: 10.1007/s11044-013-9400-9
  • Allota B, Conti R, Meli E, Pugi L, Ridolfi A. Railway vehicle dynamics under degraded adhesion conditions: an innovative HIL architecture for braking tests on full-scale roller-rigs. Int J Railway Technol. 2013;2:21–53. doi:doi:10.4203/ijrt.2.3.2.
  • Sebès M, Chevalier L, Ayasse J-B, Chollet H. A fast-simplified wheel–rail contact model consistent with perfect plastic materials. Vehicle Syst Dyn. 2012;50:1453–1471. doi: 10.1080/00423114.2012.669483
  • Sebès M, Chollet H, Ayasse J-B, Chevalier L. A multi-Hertzian contact model considering plasticity. Wear. 2014;314:118–124. doi: 10.1016/j.wear.2013.11.036
  • Ignesti M, Innocenti A, Marini L, Meli E, Rindi A. Development of a model for the simultaneous analysis of wheel and rail wear in railway systems. Multibody Syst Dyn. 2014;31:191–240. doi: 10.1007/s11044-013-9360-0
  • Ekberg A, Åkesson B, Kabo E. Wheel/rail rolling contact fatigue – probe, predict, prevent. Wear. 2014;314:2–12. doi: 10.1016/j.wear.2013.12.004
  • Ding J, Li F, Huang Y, Sun S, Zhang L. Application of the semi-Hertzian method to the prediction of wheel wear in heavy haul freight car. Wear. 2014;314:104–110. doi: 10.1016/j.wear.2013.11.052
  • Sugiyama H, Yada M, Yamamoto H, et al. Wheel and rail profile wear on small radius curved tracks and its effect on derailment coefficients: measurement and simulation. Int J Railway Technol. 2013;2:85–98. doi:doi:10.4203/ijrt.2.4.5.
  • Polach O, Böttcher A. A new approach to define criteria for rail vehicle model validation. Vehicle Syst Dyn. 2014;52:125–141. doi: 10.1080/00423114.2014.881515
  • Suarez B, Mera JM, Martinez ML, Chover JA. Assessment of the influence of the elastic properties of rail vehicle suspensions on safety, ride quality and track fatigue. Vehicle Syst Dyn. 2012;51:280–300. doi: 10.1080/00423114.2012.725852
  • Suarez B, Felez J, Maroto J, Rodriguez P. Sensitivity analysis to assess the influence of the inertial properties of railway vehicle bodies on the vehicle's dynamic behaviour. Vehicle Syst Dyn. 2012;51:251–279. doi: 10.1080/00423114.2012.725851
  • Suarez B, Felez J, Antonio Lozano J, Rodriguez P. Influence of the track quality and of the properties of the wheel–rail rolling contact on vehicle dynamics. Vehicle Syst Dyn. 2012;51:301–320. doi: 10.1080/00423114.2012.725853
  • Magalhães H, Ambrósio J, Pombo J. Railway vehicle modelling for the vehicle–track interaction compatibility analysis. Proc IMechE Part K: J Multi-body Dyn. 2015. doi:10.1177/1464419315608275.
  • Arora JS. Introduction to optimum design. Boston: Academic Press; 2012.
  • Walter É. Numerical methods and optimization: a consumer guide. Springer International Publishing; 2014. doi:doi:10.1007/978-3-319-07671-3.
  • Deb K, Agrawal S, Pratap A, Meyarivan T. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer M, Deb K, Rudolph G, et al., editors. Parallel problem solving from nature PPSN VI. vol. 1917. Berlin: Springer; 2000. p. 849–858.
  • Carvalho M, Ambrósio J, Eberhard P. Identification of validated multibody vehicle models for crash analysis using a hybrid optimization procedure. Struct Multidiscipl Optim 2011;44:85–97. doi: 10.1007/s00158-010-0590-y
  • Eberhard P, Dignath F, Kübler L. Parallel evolutionary optimization of multibody systems with application to railway dynamics. Multibody Syst Dyn. 2003;9:143–164. doi: 10.1023/A:1022515214842
  • Sivanandam SN, Deepa SN. Introduction to genetic algorithms. Berlin: Springer; 2007.
  • Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by simulated annealing. Science. 1983;220:671–680. doi: 10.1126/science.220.4598.671
  • Gazi V, Passino KM. Swarm stability and optimization. Berlin: Springer; 2011.
  • Aird TJ, Rice JR. Systematic search in high dimensional sets. SIAM J Numer Anal. 1977;14:296–312. doi: 10.1137/0714019
  • Myers RH, Montgomery DC, Anderson-Cook CM. Response surface methodology: process and product optimization using designed experiments. Hoboken, NJ: Wiley; 2009.
  • Custódio AL, Madeira JFA. GLODS: global and local optimization using direct search. J Global Optim. 2014;1–28.
  • Pombo J. A multibody methodology for railway dynamics applications [PhD dissertation]. Lisbon: IDMEC/Department of Mechanical Engineering, Instituto Superior Técnico; 2004.
  • He Y, McPhee J. Optimization of the lateral stability of rail vehicles. Vehicle Syst Dyn. 2002;38:361–390. doi: 10.1076/vesd.38.5.361.8278
  • Mazzola L, Bruni S. Effect of suspension parameter uncertainty on the dynamic behaviour of railway vehicles. Appl Mech Mater. 2012;104:177–185. doi:10.4028/www.scientific.net/AMM.104.177
  • Gear CW. Simultaneous numerical solution of differential-algebraic equations. IEEE T Circuit Theory. 1971;18:89–95. doi: 10.1109/TCT.1971.1083221
  • UIC 861-2. Profiles Unifiés de Rails à rails-aiguilles adptés aux profils de rails UIC 54 et 60 kg/m. ed.; 1989.
  • Kalker JJ. Three-dimensional elastic bodies in rolling contact. Dordrecht: Kluwer Academic Publishers; 1990.
  • Shen ZY, Hedrick JK, Elkins JA. A comparison of alternative creep force models for rail vehicle dynamic analysis. 8th IAVSD symposium on dynamics of vehicles on road and tracks. Cambridge, Massachussetts; 1983. p. 591–605.
  • Pombo J. Application of a computational tool to study the influence of worn wheels on railway vehicle dynamics. J Software Eng Appl. 2012;5:51–61. doi: 10.4236/jsea.2012.52009

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.