Publication Cover
Vehicle System Dynamics
International Journal of Vehicle Mechanics and Mobility
Volume 56, 2018 - Issue 2
1,099
Views
27
CrossRef citations to date
0
Altmetric
Articles

Hunting stability analysis of high-speed train bogie under the frame lateral vibration active control

, , &
Pages 297-318 | Received 15 Nov 2016, Accepted 11 Aug 2017, Published online: 15 Sep 2017

References

  • Goodall RM, Kortüm W. Mechatronic developments for railway vehicles of the future. Control Eng Pract. 2002;10(8):887–898. doi: 10.1016/S0967-0661(02)00008-4
  • Ward CP, Weston PF, Stewart EJC, et al. Condition monitoring opportunities using vehicle-based sensors. Proc Inst Mech Eng Part F: J Rail Rapid Transit. 2011;225(2):202–218. doi: 10.1177/09544097JRRT406
  • Pearson JT, Goodall RM, Mei TX, et al. Active stability control strategies for a high speed bogie. Control Eng Pract. 2004;12(11):1381–1391. doi: 10.1016/S0967-0661(03)00152-7
  • Abood KHA, Khan RA. Investigation to improve hunting stability of railway carriage using semi-active longitudinal primary stiffness suspension. J Mech Eng Res. 2010;2(5):97–105.
  • Pearson JT, Goodall RM, Mei TX, et al. Design and experimental implementation of an active stability system for a high speed bogie. Vehicle Syst Dyn. 2004;41:43–52.
  • Gretzschel M, Jaschinski A. Design of an active wheelset on a scaled roller rig. Vehicle Syst Dyn. 2004;41(5):365–381. doi: 10.1080/00423110412331300336
  • Wickens AH. Comparative stability of bogie vehicles with passive and active guidance as influenced by friction and traction. Vehicle Syst Dyn. 2009;47(9):1137–1146. doi: 10.1080/00423110802495800
  • Mei TX, Goodall RM. Recent development in active steering of railway vehicles. Vehicle Syst Dyn. 2003;39(6):415–436. doi: 10.1076/vesd.39.6.415.14594
  • Perez J, Busturia JM, Goodall RM. Control strategies for active steering of bogie-based railway vehicles. Control Eng Pract. 2002;10(9):1005–1012. doi: 10.1016/S0967-0661(02)00070-9
  • Wei X, Zhu M, Jia L. A semi-active control suspension system for railway vehicles with magnetorheological fluid dampers. Vehicle Syst Dyn. 2016;54(7):982–1003. Available from: http://dx.doi.org/10.1080/00423114.2016.1177189.
  • Ahmadian M, Mohan A. Semiactive control of hunting stability in rail vehicles. In: Proceeding of ASME international mechanical engineering congress and exposition (IMECE'05). 2005 Nov ; Orlando, FL, USA; p. 63–68.
  • Bruni S, Goodall R, Mei TX, et al. Control and monitoring for railway vehicle dynamics. Vehicle Syst Dyn. 2007;45(7–8):743–779. doi: 10.1080/00423110701426690
  • Alonso A, Giménez JG, Gomez E. Yaw damper modelling and its influence on railway dynamic stability. Vehicle Syst Dyn. 2011;49(9):1367–1387. doi: 10.1080/00423114.2010.515031
  • Zhai W, Liu P, Lin J, et al. Experimental investigation on vibration behaviour of a CRH train at speed of 350 km/h. Int J Rail Transport. 2015;3(1):1–16. Available from: http://dx.doi.org/10.1080/23248378.2014.992819.
  • Goodall RM, Bruni S, Mei TX. Concepts and prospects for actively controlled railway running gear. Vehicle Syst Dyn. 2006;44(suppl. 1):60–70. Available from: http://dx.doi.org/10.1080/00423110600867374.
  • Mei TX, Goodall RM. Stability control of railway bogies using absolute stiffness: sky-hook spring approach. Veh Syst Dyn. 2006;44(suppl. 1):83–92. Available from: http://dx.doi.org/10.1080/00423110600867440.
  • Zolotas AC, Pearson JT, Goodall RM. Modelling requirements for the design of active stability control strategies for a high speed bogie. Multibody Syst Dyn. 2006;15(1):51–66. Available from: http://dx.doi.org/10.1007/s11044-006-2361-5.
  • Yao Y, Zhang H-J, Luo S-H. The mechanism of drive system flexible suspension and its application in locomotives. Transport. 2015;30(1):69–79. doi: 10.3846/16484142.2013.785977
  • Pareto V. Manual of political economy. London: The MacMillan Press; 1971 (original edition in French in 1927).
  • Hernández C, Naranjani Y, Sardahi Y, et al. Simple cell mapping method for multi-objective optimal feedback control design. Int J Dyn Control. 2013;1(3):231–238. doi: 10.1007/s40435-013-0021-1
  • Jones DF, Mirrazavi SK, Tamiz M. An Multi-objective meta-heuristics: an overview of the current state-of-the-art. Eur J Oper Res. 2002;137(1):1–9. doi: 10.1016/S0377-2217(01)00123-0
  • Marler RT, Arora JS. Survey of multi-objective optimization methods for engineering. Struct Multidiscip Optim. 2004;26(6):369–395. doi: 10.1007/s00158-003-0368-6
  • Srinivas N, Deb K. Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol Comput. 1994;2(3):221–248. doi: 10.1162/evco.1994.2.3.221
  • Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans Evol Comput. 2002;6(2):182–197. doi: 10.1109/4235.996017
  • Beyer H-G, Deb K. On self-adaptive features in real-parameter evolutionary algorithms. IEEE Trans Evol Comput. 2001;5(3):250–270. doi: 10.1109/4235.930314
  • Deb K, Agrawal RB. Simulated binary crossover for continuous search space. Complex Syst. 1995;9(2):115–148.
  • Raghuwanshi MM, Kakde OG. Survey on multiobjective evolutionary and real coded genetic algorithms. In: Proceedings of the 8th Asia Pacific symposium on intelligent and evolutionary systems; Cairns, Australia; 2004. p. 150–161.
  • Yao Y, Zhang X, Liu X. The active control of the lateral movement of a motor suspended under a high-speed locomotive. Proc Inst Mech Eng Part F: J Rail Rapid Transit. 2015. Available from: https://doi.org/10.1177/0954409715605138.
  • Sun J-Q. A method of continuous time approximation of delayed dynamical systems. Commun Nonlinear Sci Numer Simul. 2008;14(4):998–1007. doi: 10.1016/j.cnsns.2008.02.008
  • Sun J-Q. Finite dimensional Markov process approximation for stochastic time-delayed dynamical systems. Commun Nonlinear Sci Numer Simul. 2009;14(5):1822–1829. doi: 10.1016/j.cnsns.2008.07.014
  • Huan R-H, Chen L-X, Sun J-Q. Multi-objective optimal design of active vibration absorber with delayed feedback. J Sound Vib. 2015;339:56–64. doi: 10.1016/j.jsv.2014.11.019
  • Shen ZY, Hedrick JK, Elkins JA. A comparison of alternative creep force models for railvehicle dynamic analysis. In: Proceeding of 8th IAVSD symposium on vehicle system dynamics, dynamics of vehicles on roads and tracks. MIT, Cambridge: Swets and Zeitlinger; 1984. p. 591–605.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.