Publication Cover
Vehicle System Dynamics
International Journal of Vehicle Mechanics and Mobility
Volume 56, 2018 - Issue 8
576
Views
25
CrossRef citations to date
0
Altmetric
Articles

Analysis of the evolvement of contact wire wear irregularity in railway catenary based on historical data

ORCID Icon, , , ORCID Icon, &
Pages 1207-1232 | Received 01 Jun 2017, Accepted 16 Nov 2017, Published online: 06 Dec 2017

References

  • Cats O, Yap M, van Oort N. Exposing the role of exposure: public transport network risk analysis. Transp Res A Policy Pract. 2016;88:1–14. doi: 10.1016/j.tra.2016.03.015
  • Y Zhu, Goverde R. System-based vulnerability measures for railway systems. Proceedings of the 7th International Conference on Railway Operations Modelling and Analysis (IAROR): RailLille; 2017.
  • Zhang W, Mei G, Zeng J. A study of pantograph/catenary system dynamics with influence of presag and irregularity of contact wire. Veh Syst Dyn. 2002;37:593–604. doi: 10.1080/00423114.2002.11666265
  • Nagasaka S, Aboshi M. Measurement and estimation of contact wire unevenness. Q Rep RTRI. 2004;45(2):86–91. doi: 10.2219/rtriqr.45.86
  • Zhang W, Shen Z, Zeng J. Study on dynamics of coupled systems in high-speed trains. Veh Syst Dyn. 2013;51(7):966–1016. doi: 10.1080/00423114.2013.798421
  • Collina A, Fossati F, Papi M, et al. Impact of overhead line irregularity on current collection and diagnostics based on the measurement of pantograph dynamics. Proc Inst Mech Eng F J Rail Rapid Transit. 2007;221(4):547–559. doi: 10.1243/09544097F02105
  • Zhang W, Mei G, Wu X, et al. Hybrid simulation of dynamics for the pantograph–catenary system. Veh Syst Dyn. 2002;38(6):393–414. doi: 10.1076/vesd.38.6.393.8347
  • Wang H, Liu Z, Song Y, et al. Detection of contact wire irregularities using a quadratic time-frequency representation of the pantograph–catenary contact force. IEEE Trans Instrum Meas. 2016;65(6):1385–1397. doi: 10.1109/TIM.2016.2518879
  • Vo Van O, Massat JP, Laurent C, et al. Introduction of variability into pantograph–catenary dynamic simulations. Veh Syst Dyn. 2014;52(10):1254–1269. doi: 10.1080/00423114.2014.922199
  • Collina A, Melzi S, Facchinetti A. On the prediction of wear of contact wire in OHE lines: a proposed model. Veh Syst Dyn. 2002;37(sup1):579–592. doi: 10.1080/00423114.2002.11666264
  • Bucca G, Collina A. A procedure for the wear prediction of collector strip and contact wire in pantograph–catenary system. Wear. 2009;266(1):46–59. doi: 10.1016/j.wear.2008.05.006
  • Yamashita C, Sugahara A. Wear modes of contact wire and contact strip under electric current condition. Q Rep RTRI. 2014;55(2):67–72. doi: 10.2219/rtriqr.55.67
  • Nagasawa H, Kato K. Wear mechanism of copper alloy wire sliding against iron-base strip under electric current. Wear. 1998;216(2):179–183. doi: 10.1016/S0043-1648(97)00162-2
  • Zhao H, Barber GC, Liu J. Friction and wear in high speed sliding with and without electrical current. Wear. 2001;249(5):409–414. doi: 10.1016/S0043-1648(01)00545-2
  • Ding T, Chen GX, Bu J, et al. Effect of temperature and arc discharge on friction and wear behaviours of carbon strip/copper contact wire in pantograph–catenary systems. Wear. 2011;271(9):1629–1636. doi: 10.1016/j.wear.2010.12.031
  • Kim J, Chae H, Park B, et al. State sensitivity analysis of the pantograph system for a high-speed rail vehicle considering span length and static uplift force. J Sound Vib. 2007;303(3):405–427. doi: 10.1016/j.jsv.2006.06.073
  • Zhang W, Liu Y, Mei G. Evaluation of the coupled dynamical response of a pantograph–catenary system: contact force and stresses. Veh Syst Dyn. 2006;44(8):645–658. doi: 10.1080/00423110600744656
  • Nåvik P, Rønnquist A, Stichel S. The use of dynamic response to evaluate and improve the optimization of existing soft railway catenary systems for higher speeds. Proc Inst Mech Eng F J Rail Rapid Transit. 2016;230(4):1388–1396. doi: 10.1177/0954409715605140
  • Rønnquist A, Nåvik P. Dynamic assessment of existing soft catenary systems using modal analysis to explore higher train velocities: a case study of a Norwegian contact line system. Veh Syst Dyn. 2015;53(6):756–774. doi: 10.1080/00423114.2015.1013040
  • Kudo S, Honda S, Ikeda M. Contact force signal analysis of current collecting with bispectrum and wavelet. Proceedings of the 41st SICE Annual Conference, Vol. 4. IEEE; 2002, p. 2478–2482.
  • Mallat S, Hwang WL. Singularity detection and processing with wavelets. IEEE Trans Inf Theory. 1992;38(2):617–643. doi: 10.1109/18.119727
  • Kusumi S, Fukutani T, Nezu K. Diagnosis of overhead contact line based on contact force. Q Rep RTRI. 2006;47(1):39–45. doi: 10.2219/rtriqr.47.39
  • Stoica P, Moses RL. Introduction to spectral analysis. Upper Saddle River: Prentice Hall; 1997.
  • Akaike H. Power spectrum estimation through autoregressive model fitting. Ann Inst Stat Math. 1969;21(1):407–419. doi: 10.1007/BF02532269
  • Akaike H. An information criterion (AIC). Math Sci. 1976;14(153):5–9.
  • Mallat S. A wavelet tour of signal processing. 2nd ed. London: Academic Press; 1999.
  • Liu Z, Wang H, Dollevoet R, et al. Ensemble EMD-based automatic extraction of the catenary structure wavelength from the pantograph–catenary contact force. IEEE Trans Instrum Meas. 2016;65(10):2272–2283. doi: 10.1109/TIM.2016.2579360
  • Bruni S, Ambrosio J, Carnicero A, et al. The results of the pantograph–catenary interaction benchmark. Veh Syst Dyn. 2015;53(3):412–435. doi: 10.1080/00423114.2014.953183
  • Song Y, Liu Z, Wang H, et al. Nonlinear modelling of high-speed catenary based on analytical expressions of cable and truss elements. Veh Syst Dyn. 2015;53(10):1455–1479. doi: 10.1080/00423114.2015.1051548
  • European Committee for Electrotechnical Standardization EN 50318. Railway applications – current collection systems – validation of simulation of the dynamic interaction between pantograph and overhead contact line. Brussels: European Standards; 2002.
  • Song D, Jiang Y, Zhang W. Dynamic performance of a pantograph–catenary system with consideration of the contact surface. Proc Inst Mech Eng F J Rail Rapid Transit. 2016. DOI:10.1177/0954409716664934.
  • Boffi P, Cattaneo G, Amoriello L, et al. Optical fiber sensors to measure collector performance in the pantograph–catenary interaction. IEEE Sens J. 2009;9(6):635–640. doi: 10.1109/JSEN.2009.2020244
  • Carnevale M, Collina A. Processing of collector acceleration data for condition-based monitoring of overhead lines. Proc Inst Mech Eng F J Rail Rapid Transit. 2016;230(2):472–485. doi: 10.1177/0954409714545637

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.