415
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

Demonstration of a time-efficient mobility system using a scaled smart city

, , , , ORCID Icon & ORCID Icon
Pages 787-804 | Received 31 Mar 2019, Accepted 01 Nov 2019, Published online: 18 Feb 2020

References

  • Malikopoulos AA. A duality framework for stochastic optimal control of complex systems. IEEE Trans Automat Contr. 2016;61(10):2756–2765. doi: 10.1109/TAC.2015.2504518
  • Zhao L, Malikopoulos AA. Decentralized optimal control of connected and automated vehicles in a corridor. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC). IEEE; 2018. p. 1252–1257.
  • Spieser K, Treleaven K, Zhang R. Toward a systematic approach to the design and evaluation of automated mobility-on-demand systems: a case study in singapore. In: Meyer G, Beiker S, editors. Road vehicle automation. Cham: Springer; 2014. p. 229–245.
  • Fagnant DJ, Kockelman KM. The travel and environmental implications of shared autonomous vehicles, using agent-based model scenarios. Transp Res C. 2014;40:1–13. doi: 10.1016/j.trc.2013.12.001
  • Shladover SE, Desoer CA, Hedrick JK, et al. Automated vehicle control developments in the PATH program. IEEE Trans Veh Technol. 1991;40(1):114–130. doi: 10.1109/25.69979
  • Rajamani R, Tan HS, Law BK, et al. Demonstration of integrated longitudinal and lateral control for the operation of automated vehicles in platoons. IEEE Trans Control Syst Technol. 2000;8(4):695–708. doi: 10.1109/87.852914
  • Tsugawa S. An overview on an automated truck platoon within the energy its project. IFAC Proc Vol. 2013;46(21):41–46. doi: 10.3182/20130904-4-JP-2042.00110
  • Dávila A, Nombela M. Sartre: safe road trains for the environment. In: Conference on Personal Rapid Transit PRT@ LHR; 2010. Vol. 3. p. 2–3.
  • Shladover SE. PATH at 20–history and major milestones. IEEE Trans Intell Transp Syst. 2007;8(4):584–592. doi: 10.1109/TITS.2007.903052
  • Lee J, Park B. Development and evaluation of a cooperative vehicle intersection control algorithm under the connected vehicles environment. IEEE Trans Intell Transp Syst. 2012;13(1):81–90. doi: 10.1109/TITS.2011.2178836
  • Rakha H, Kamalanathsharma RK. Eco-driving at signalized intersections using V2I communication. In: 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC). IEEE; 2011. p. 341–346.
  • Malikopoulos AA, Cassandras CG, Zhang YJ. A decentralized energy-optimal control framework for connected automated vehicles at signal-free intersections. Automatica. 2018;93:244–256. doi: 10.1016/j.automatica.2018.03.056
  • Mahbub AMI, Zhao L, Assanis D. Energy-optimal coordination of connected and automated vehicles at multiple intersections. In: Proceedings of 2019 American Control Conference, Philadelphia, PA; 2019. p. 2664–2669.
  • Chalaki B, Malikopoulos AA. An optimal coordination framework for connected and automated vehicles in two interconnected intersections. In: Proceedings of 2019 IEEE Conference on Control Technology and Applications, Hong Kong; 2019. p. 888–893.
  • Rios-Torres J, Malikopoulos AA. Automated and cooperative vehicle merging at highway on-ramps. IEEE Trans Intell Transp Syst. 2017;18(4):780–789. doi: 10.1109/TITS.2016.2587582
  • Ntousakis IA, Nikolos IK, Papageorgiou M. Optimal vehicle trajectory planning in the context of cooperative merging on highways. Transp Res C. 2016;71:464–488. doi: 10.1016/j.trc.2016.08.007
  • Malikopoulos AA, Hong S, Park B. Optimal control for speed harmonization of automated vehicles. IEEE Trans Intell Transp Syst. 2019;20(7):2405–2417. doi: 10.1109/TITS.2018.2865561
  • Athans M. A unified approach to the vehicle-merging problem. Transp Res. 1969;3(1):123–133. doi: 10.1016/0041-1647(69)90109-9
  • Kachroo P, Li Z. Vehicle merging control design for an automated highway system. In: Proceedings of Conference on Intelligent Transportation Systems, Boston, MA; 1997. p. 224–229.
  • Antoniotti M, Deshpande A, Girault A. Microsimulation analysis of automated vehicles on multiple merge junction highways. In: IEEE International Conference in Systems, Man, and Cybernetics, Orlando, FL; 1997. p. 839–844.
  • Ran B, Leight S, Chang B. A microscopic simulation model for merging control on a dedicated-lane automated highway system. Transp Res C. 1999;7(6):369–388. doi: 10.1016/S0968-090X(99)00028-5
  • Dresner K, Stone P. Multiagent traffic management: a reservation-based intersection control mechanism. In: Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagents Systems, New York, NY; 2004. p. 530–537.
  • Dresner K, Stone P. A multiagent approach to autonomous intersection management. J Artif Intell Res. 2008;31:591–656. doi: 10.1613/jair.2502
  • de La Fortelle A. Analysis of reservation algorithms for cooperative planning at intersections. In: 13th International IEEE Conference on Intelligent Transportation Systems, Madeira Island, Portugal; 2010. p. 445–449.
  • Huang S, Sadek A, Zhao Y. Assessing the mobility and environmental benefits of reservation-based intelligent intersections using an integrated simulator. IEEE Trans Intell Transp Syst. 2012;13(3):1201–1214. doi: 10.1109/TITS.2012.2186442
  • Zohdy IH, Kamalanathsharma RK, Rakha H. Intersection management for autonomous vehicles using iCACC. 2012. p. 1109–1114.
  • Yan F, Dridi M, El Moudni A. Autonomous vehicle sequencing algorithm at isolated intersections. 2009 12th International IEEE Conference on Intelligent Transportation Systems, St. Louis, MO; 2009. p. 1–6.
  • Li L, Wang FY. Cooperative driving at blind crossings using intervehicle communication. IEEE Trans Veh Technol. 2006;55(6):1712–1724. doi: 10.1109/TVT.2006.878730
  • Zhu F, Ukkusuri SV. A linear programming formulation for autonomous intersection control within a dynamic traffic assignment and connected vehicle environment. Transp Res C. 2015;55:363–378. doi: 10.1016/j.trc.2015.01.006
  • Wu J, Perronnet F, Abbas-Turki A. Cooperative vehicle-actuator system: a sequence-based framework of cooperative intersections management. IET Intell Trans Syst. 2014;8(4):352–360. doi: 10.1049/iet-its.2013.0093
  • Kim KD, Kumar P. An MPC-based approach to provable system-wide safety and liveness of autonomous ground traffic. IEEE Trans Automat Contr. 2014;59(12):3341–3356. doi: 10.1109/TAC.2014.2351911
  • Barth M, Boriboonsomsin K. Energy and emissions impacts of a freeway-based dynamic eco-driving system. Transp Res D. 2009;14(6):400–410. doi: 10.1016/j.trd.2009.01.004
  • Berry IM. The effects of driving style and vehicle performance on the real-world fuel consumption of us light-duty vehicles [dissertation]. Massachusetts Institute of Technology; 2010.
  • Wu C, Zhao G, Ou B. A fuel economy optimization system with applications in vehicles with human drivers and autonomous vehicles. Transp Res D. 2011;16(7):515–524. doi: 10.1016/j.trd.2011.06.002
  • Zhao L, Malikopoulos AA, Rios-Torres J. Optimal control of connected and automated vehicles at roundabouts: An investigation in a mixed-traffic environment. In: 15th IFAC Symposium on Control in Transportation Systems, Genova, Italy; 2018. p. 73–78.
  • Rios-Torres J, Malikopoulos AA. Impact of partial penetrations of connected and automated vehicles on fuel consumption and traffic flow. IEEE Trans Intell Veh. 2018;3(4):453–462. doi: 10.1109/TIV.2018.2873899
  • Zhong Z, Joyoung L, Zhao L. Evaluations of managed lane strategies for arterial deployment of cooperative adaptive cruise control. In: TRB Annual Meeting; Washington DC, USA; 2017.
  • Rios-Torres J, Malikopoulos AA. A survey on coordination of connected and automated vehicles at intersections and merging at highway on-ramps. IEEE Trans Intell Transp Syst. 2017;18(5):1066–1077. doi: 10.1109/TITS.2016.2600504
  • Guanetti J, Kim Y, Borrelli F. Control of connected and automated vehicles: state of the art and future challenges. Annu Rev Control. 2018;45:18–40. doi: 10.1016/j.arcontrol.2018.04.011
  • Wang Y, Li X, Yao H. Review of trajectory optimisation for connected automated vehicles. IET Intell Transp Syst. 2018;13:580–586. doi: 10.1049/iet-its.2018.5184
  • Paull L, Tani J, Ahn H. Duckietown: an open, inexpensive and flexible platform for autonomy education and research. In: Proceedings of the IEEE International Conference on Robotics and Automation, Marina Bay Sands, Singapore; 2017. p. 1497–1504.
  • Hyaldmar N, He Y, Porok A. A fleet of miniature cars for experiments in cooperative driving. In: Proceedings of the IEEE International Conference on Robotics and Automation, Montreal, Canada; 2019.
  • Stager A, Bhan L, Malikopoulos A, et al. A scaled smart city for experimental validation of connected and automated vehicles. IFAC-PapersOnLine. 2018;51(9):130–135. doi: 10.1016/j.ifacol.2018.07.022
  • Malikopoulos AA, Zhao L. Optimal path planning for connected and automated vehicles at urban intersections. In: Proceedings of the 58th IEEE Conference on Decision and Control, Nice, France; 2019.
  • Malikopoulos AA, Assanis DN, Papalambros PY. Optimal engine calibration for individual driving styles. In: SAE Proceedings, Technical Paper 2008-01-1367, Detroit, MI; 2008.
  • Malikopoulos AA, Zhao L. A closed-form analytical solution for optimal coordination of connected and automated vehicles. In: Proceedings of 2019 American Control Conference, Philadelphia, PA; 2019. p. 3599–3604.
  • Wiedemann R. Simulation des strassenverkehrsflusses [dissertation]. Universität Karlsruhe; 1974.
  • Thrun S, Montemerlo M, Dahlkamp H. Stanley: the robot that won the DARPA grand challenge. In: Buehler M, Iagnemma K, Singh S, editors. Springer tracts in advanced robotics. Berlin: Springer; 2007. p. 1–43.
  • Spong MW, Hutchinson S, Vidyasagar M. Robot dynamics and control. 2nd ed. John Wiley & Sons; 2004.
  • Zhao L, Malikopoulos AA, Rios-Torres J. On the traffic impacts of optimally controlled connected and automated vehicles. In: Proceedings of 2019 IEEE Conference on Control Technology and Applications, Hong Kong; 2019. p. 882–887.
  • Zhao L, Mahbub AMI, Malikopoulos A. Optimal vehicle dynamics and powertrain control for connected and automated vehicle. In: Proceedings of IEEE Conference on Control Technology and Applications, Hong Kong; 2019. p. 33–38.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.