Publication Cover
Vehicle System Dynamics
International Journal of Vehicle Mechanics and Mobility
Volume 59, 2021 - Issue 8
525
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Minimum-time optimal control for vehicles with active rear-axle steering, transfer case and variable parameters

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1227-1255 | Received 22 Jul 2019, Accepted 04 Mar 2020, Published online: 01 Apr 2020

References

  • Harrer M, Pfeffer P. Steering handbook. Berlin: Springer; 2017.
  • Breuer B, Bill KH. Brake technology handbook. Warrendale (PA): SAE International; 2008.
  • de Castro R, Tanelli M, Araujo RE, et al. Minimum-time manoeuvring in electric vehicles with four wheel-individual-motors. Veh Syst Dyn. 2014;52:824–846. doi: 10.1080/00423114.2014.902973
  • Gudmundsson S. General aviation aircraft design. Oxford, Waltham (MA): Butterworth-Heinemann; 2014.
  • Brayshaw DL, Harrison MF. A quasi steady state approach to race car lap simulation in order to understand the effects of racing line and centre of gravity location. Proc Inst Mech Eng, Part D. 2005;219:725–739. doi: 10.1243/095440705X11211
  • Candelpergher A, Gadola M, Vetturi D. Developments of a method for lap time simulation. In: SAE Conference Proceedings. 2000. p. 241–246.
  • Patton C. Development of vehicle dynamics tools for motorsports [PhD dissertation]. Oregon State University; 2013.
  • Siegler B, Deakin A, Crolla D. Lap time simulation: comparison of steady state, quasi-static and transient racing car cornering strategies. Proceedings of the 2000 SAE Motorsports Engineering Conference and Exposition. 2000.
  • Waldmann P. Entwicklung eines Fahrzeugführungssystems zum Erlernen der Ideallinie auf Rennstrecken [PhD dissertation]. Shaker; 2009.
  • Dal Bianco N, Bertolazzi E, Biral F, et al. Comparison of direct and indirect methods for minimum lap time optimal control problems. Veh Syst Dyn. 2018;57:665–696. doi: 10.1080/00423114.2018.1480048
  • Kelly M. An introduction to trajectory optimization: how to do your own direct collocation. SIAM Rev. 2017;59:849–904. doi: 10.1137/16M1062569
  • Betts J. Practical methods for optimal control and estimation using nonlinear programming. 2nd ed. Philadelphia (PA): SIAM; 2010.
  • Casanova D, Sharp RS, Symonds P. Minimum time manoeuvring: the significance of yaw inertia. Veh Syst Dyn. 2000;34:77–115. doi: 10.1076/0042-3114(200008)34:2;1-G;FT077
  • Rao AV. A survey of numerical methods for optimal control. Adv Astronaut Sci. 2010;135:497–528.
  • Wächter A, Biegler LT. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math Program. 2005;1:25–57.
  • Limebeer DJN, Perantoni G, Rao AV. Optimal control of formula one car energy recovery systems. Int J Control. 2014;87:2065–2080.
  • Bertolazzi E, Biral F, Da Lio M. Symbolic numeric indirect method for solving optimal control problems for large multibody systems. Multibody Syst Dyn. 2005;13:233–252. doi: 10.1007/s11044-005-3987-4
  • Hendrikx JPM, Imeljlink TJJ, Kriens RFC. Application of optimal control theory to inverse simulation of car handling. Veh Syst Dyn. 1996;26:449–461. doi: 10.1080/00423119608969319
  • Cossalter V, Da Lio M, Lot R, et al. A general method for the evaluation of vehicle manoeuvrability with special emphasis on motorcycles. Veh Syst Dyn. 1999;31:113–135. doi: 10.1076/vesd.31.2.113.2094
  • Casanova PT. On minimum time vehicle manoeuvring: the theoretical optimal lap [PhD dissertation]. Cranfield University; 2000.
  • Kelly DP. Lap time simulation with transient vehicle and tyre dynamics [PhD dissertation]. Cranfield University; 2008.
  • Bertolazzi E, Biral F, Da Lio M. Real-Time motion planning for multibody systems real life application examples. Multibody Syst Dyn. 2007;17:119–139. doi: 10.1007/s11044-007-9037-7
  • Lot R, Dal Bianco N. The significance of high-order dynamics in lap time simulations. 24th Int. Symposium on Dyn. of Veh. on Roads and Tracks (IAVSD). 2015.
  • Dal Bianco N, Lot R, Gadola M. Minimum time optimal control simulation of a GP2 race car. Proc Inst Mech Eng, Part D. 2018;232:1180–1195. doi: 10.1177/0954407017728158
  • Tavernini D, Massaro M, Velenis E, et al. Minimum time cornering: the effect of road surface and car transmission layout. Veh Syst Dyn. 2013;51:1533–1547. doi: 10.1080/00423114.2013.813557
  • Perantoni G, Limebeer DJN. Optimal control for a Formula One car with variable parameters. Veh Syst Dyn. 2014;52:653–678. doi: 10.1080/00423114.2014.889315
  • Masouleh MI, Limebeer DJN. Optimizing the aero-suspension interactions in a Formula One car. IEEE Trans Control Syst Technol. 2016;24:912–927. doi: 10.1109/TCST.2015.2475396
  • Tremlett AJ, Limebeer DJN. Optimal tyre usage for a formula one car. Veh Syst Dyn. 2016;54:1448–1473. doi: 10.1080/00423114.2016.1213861
  • Falugi P, Kerrigan E, Van Wyk E. Imperial College London optimal control software user guide (ICLOCS). Available from: http://www.ee.ic.ac.uk/ICLOCS.
  • Patterson MA, Rao AV. GPOPS-II: a MATLAB software for solving multiple-phase optimal control problems using hp-adaptive Gaussian quadrature collocation methods and sparse nonlinear programming. ACM Trans Math Softw. 2014;41:1:1–1:37. doi: 10.1145/2558904
  • de Castro R, Tanelli M, Araujo RE, et al. Torque allocation in electric vehicles with in-wheel motors: a performance-oriented approach. 52nd IEEE Conference on Decision and Control. 2013. p. 1538–1543.
  • de Castro R, Tanelli M, Araujo RE, et al. Design of safety-oriented control allocation strategies for overactuated electric vehicles. Veh Syst Dyn. 2014;52:1017–1046. doi: 10.1080/00423114.2014.916811
  • de Castro R, Tanelli M, Araujo RE, et al. Minimum-time path-Following for highly redundant electric vehicles. IEEE Trans Control Syst Technol. 2016;24:487–501. doi: 10.1109/TCST.2015.2458773
  • Dunning I, Huchette J, Lubin M. JuMP: a modeling language for mathematical optimization. SIAM Rev. 2017;59:295–320. doi: 10.1137/15M1020575
  • Morin P, Samson C. Motion control of wheeled mobile robots. Springer; 2008. p. 799–826. (Springer Handbook of Robotics).
  • Sharp RS, Casanova D, Symonds P. A mathematical model for driver steering control, with design, tuning and performance results. Veh Syst Dyn. 2000;33:289–326. doi: 10.1076/0042-3114(200005)33:5;1-Q;FT289
  • de Boor C. A practical guide to splines. Revised ed. New York (NY): Springer; 2001.
  • Brandt C, Seidel HP, Hildebrandt K. Optimal spline approximation via L0-Minimization. In: Comput graph forum. 2015. p. 617–626.
  • Goldenthal R, Bercovier M. Spline curve approximation and design by optimal control over the knots. Computing. 2004;72:53–64. doi: 10.1007/s00607-003-0046-y
  • Kang H, Chen F, Li Y, et al. Knot calculation for spline fitting via sparse optimization. Computer-Aided Design. 2015;58:179–188. doi: 10.1016/j.cad.2014.08.022
  • Van Loock W, Pipeleers G, De Schutter J, et al. A convex optimization approach to curve fitting with B-splines. IFAC Proc. 2011. Vol. 44, p. 2290–2295.
  • Suchomski P. Method of optimal variable-knot spline interpolation in the L2 discrete norm. Int J Syst Sci. 1991;22:2263–2274. doi: 10.1080/00207729108910788
  • Perantoni G, Limebeer DJN. Optimal control of a formula one car on a three-Dimensional track– part 1: track modeling and identification. J Dyn Syst Meas Control. 2015;137:051019. doi: 10.1115/1.4028253
  • Bezanson J, Edelman A, Karpinski S, et al. Julia: a fresh approach to numerical computing. SIAM Rev. 2017;59:65–98. doi: 10.1137/141000671
  • MATLAB Mathematics documentation. [cited 2019 Nov 29]. Available from: https://de.mathworks.com/help/pdf_doc/matlab/math.pdf
  • Reichensdoerfer E, Odenthal D, Wollherr D. On the stability of nonlinear wheel- slip zero dynamics in traction control systems. IEEE Trans Control Syst Technol. 2018;28:489–504. doi: 10.1109/TCST.2018.2880932
  • Pacejka HB. Tyre and vehicle dynamics. Oxford: Butterworth-Heinemann; 2006.
  • Schramm D, Hiller M, Bardini R. Vehicle dynamics - modeling and simulation. Berlin, Heidelberg: Springer; 2014.
  • Smakman HT. Functional integration of slip control with active suspension for improved lateral vehicle dynamics [PhD dissertation]. Herbert Utz Verlag; 2000.
  • Revels J, Lubin M, Papamarkou T. Forward-mode automatic differentiation in Julia. arXiv:1607.07892 [cs.MS]. 2016.
  • Nocedal J, Wright SJ. Numerical optimization. New York (NY): Springer; 2006.
  • Do M, do Rosario de Pinho M, Domini IL, et al. On free time optimal control problems. Proc. of the 9th Brazilian Conf. on Dyn. Control and their Applic. 2019. p. 41–50.
  • Grote K-H, Antonsson EK. Springer handbook of mechanical engineering. New York (NY): Springer; 2009.
  • Gillespie TD. Fundamentals of vehicle dynamics. Warrendale (PA): SAE International; 1992.
  • Piyabongkarn D, Grogg J, Yuan Q, et al. Dynamic modeling of torque-biasing devices for vehicle yaw control. SAE Automotive Dynamics; 2006.
  • Rucco A, Notarstefano G, Hauser J. An efficient minimum-time trajectory generation strategy for two-track car vehicles. IEEE Trans Control Syst Technol. 2015;23:1505–1519. doi: 10.1109/TCST.2014.2377777
  • Limebeer DJN, Perantoni G. Optimal control of a formula one car on a three-dimensional track- part 2: optimal control. J Dyn Syst Meas Control. 2015;137. doi: 10.1115/1.4029466

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.