Publication Cover
Vehicle System Dynamics
International Journal of Vehicle Mechanics and Mobility
Volume 60, 2022 - Issue 3
638
Views
10
CrossRef citations to date
0
Altmetric
Articles

Nonlinear state-feedback design for vehicle lateral control using sum-of-squares programming

ORCID Icon, ORCID Icon, ORCID Icon &
Pages 743-769 | Accepted 17 Aug 2020, Published online: 09 Nov 2020

References

  • Lefèvre S, Carvalho A, Gao Y, et al. Driver models for personalised driving assistance. Veh Syst Dyn. 2015 Jul;53(12):1705–1720.
  • Ataei M, Khajepour A, Jeon S. Reconfigurable integrated stability control for four- and three-wheeled urban vehicles with flexible combinations of actuation systems. IEEE/ASME Trans Mechatron. 2018 Oct;23(5):2031–2041.
  • Voser C, Hindiyeh RY, Gerdes JC. Analysis and control of high sideslip manoeuvres. Veh Syst Dyn. 2010;48(sup1):317–336.
  • Beal CE, Boyd C. Coupled lateral-longitudinal vehicle dynamics and control design with three-dimensional state portraits. Veh Syst Dyn. 2018 Apr;57(2):286–313.
  • Bobier-Tiu CG, Beal CE, Kegelman JC, et al. Vehicle control synthesis using phase portraits of planar dynamics. Veh Syst Dyn. 2018 Jul;57(9):1318–1337.
  • Summers ME. Performance analysis of nonlinear systems combining integral quadratic constraints and sum-of-squares techniques [dissertation]. EECS Department, University of California, Berkeley; 2013.
  • Khodadadi L, Samadi B, Khaloozadeh H. Estimation of region of attraction for polynomial nonlinear systems: A numerical method. ISA Trans. 2014 Jan;53(1):25–32.
  • Nikravesh SKY. Nonlinear systems stability analysis. Boca Raton: CRC Press; 2018.
  • Parrilo PA. Semidefinite programming relaxations for semialgebraic problems. Math Program. 2003 May;96(2):293–320.
  • Tacchi M, Marinescu B, Anghel M, et al. Power system transient stability analysis using sum of squares programming. In: 2018 Power Systems Computation Conference (PSCC). IEEE; 2018 Jun. p. 1–7.
  • Jones M, Peet MM. Using sos and sublevel set volume minimization for estimation of forward reachable sets. IFAC-PapersOnLine. 2019;52(16):484–489. 11th IFAC Symposium on Nonlinear Control Systems NOLCOS 2019.
  • Landry B, Chen M, Hemley S, et al. Reach-avoid problems via sum-or-squares optimization and dynamic programming. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); IEEE; 2018 Oct. p. 1–8.
  • Singh S, Chen M, Herbert S, et al. Robust tracking with model mismatch for fast and safe planning: an sos optimization approach. Workshop on the Algorithmic Foundations of Robotics. 2019.
  • Topcu U, Packard AK, Seiler P, et al. Robust region-of-attraction estimation. IEEE Trans Automat Contr. 2010;55(1):137–142.
  • Iannelli A, Seiler P, Marcos A. Region of attraction analysis with integral quadratic constraints. Automatica. 2019;109:108543.
  • Wang S, She Z, Ge SS. Estimating minimal domains of attraction for uncertain nonlinear systems. IEEE Trans Syst Man Cyber Syst. 2020;50(11):1–12.
  • Jarvis-Wloszek Z, Feeley R, Tan W, et al. Control applications of sum of squares programming. In: Positive polynomials in control. Springer; 2005. p. 3–22.
  • Papachristodoulou A. Scalable analysis of nonlinear systems using convex optimization [dissertation]. California Institute of Technology; 2005.
  • Tan W, Packard A. Stability region analysis using polynomial and composite polynomial lyapunov functions and sum-of-squares programming. IEEE Trans Automat Contr. 2008;53(2):565–571.
  • Chesi G. Domain of attraction: analysis and control via sos programming. London: Springer; 2011.
  • Topcu U, Packard A, Seiler P. Local stability analysis using simulations and sum-of-squares programming. Automatica. 2008;44(10):2669–2675.
  • Iannelli A, Marcos A, Lowenberg M. Robust estimations of the region of attraction using invariant sets. J Franklin Inst. 2019 May;356(8):4622–4647.
  • Chakraborty A, Seiler P, Balas GJ. Nonlinear region of attraction analysis for flight control verification and validation. Control Eng Pract. 2011 Apr;19(4):335–345.
  • Cunis T, Condomines JP, Burlion L. Sum-of-squares flight control synthesis for deep-stall recovery. J Guid Control Dyn. 2020 Aug;43(8):1498–1511.
  • Zheng X, She Z, Liang Q, et al. Inner approximations of domains of attraction for a class of switched systems by computing lyapunov-like functions. Int J Robust Nonlinear Control. 2018;28(6):2191–2208.
  • Ahmadi AA, Majumdar A. DSOS and SDSOS optimization: more tractable alternatives to sum of squares and semidefinite optimization. SIAM J Appl Algebra Geom. 2019 Jan;3(2):193–230.
  • Izumi S, Somekawa H, Xin X, et al. Analysis of robust transient stability of power systems using sum of squares programming. Int J Electr Power Energy Syst. 2020;115:105401.
  • Pitarch JL, Sala A, Arino CV. Closed-form estimates of the domain of attraction for nonlinear systems via fuzzy-polynomial models. IEEE Trans Cyber. 2014 Apr;44(4):526–538.
  • Chen YJ, Tanaka M, Tanaka K, et al. Stability analysis and region-of-attraction estimation using piecewise polynomial lyapunov functions: polynomial fuzzy model approach. IEEE Trans Fuzzy Syst. 2015 Aug;23(4):1314–1322.
  • Wang S, She Z, Ge SS. Inner-estimating domains of attraction for nonpolynomial systems with polynomial differential inclusions. IEEE Trans Cyber. 2020;00:1–14.
  • Wang F, Chen Y. Dynamics and control of a novel active yaw stabilizer to enhance vehicle lateral motion stability. J Dyn Syst Meas Control. 2018 Mar;140(8).
  • Kati MS, Köroğlu H, Fredriksson J. Robust lateral control of long-combination vehicles under moments of inertia and tyre cornering stiffness uncertainties. Veh Syst Dyn. 2018 Dec;57(12):1847–1873.
  • Galluppi O, Formentin S, Savaresi SM, et al. Multivariable nonlinear data-driven control with application to autonomous vehicle lateral dynamics. J Dyn Syst Meas Control. 2019 Jun;141(10).
  • Németh B, Gáspár P, Péni T. Nonlinear automotive actuator analysis based on sum of squares programming. In: 2014 European Control Conference (ECC); IEEE; 2014 Jun. Available from: https://doi.org/https://doi.org/10.1109/ecc.2014.6862429.
  • Németh B, Gáspár P, Péni T. Nonlinear analysis of vehicle control actuations based on controlled invariant sets. Inter J Appl Math Comput Sci. 2016 Mar;26(1):31–43.
  • Tamba TA, Nazaruddin YY. Nonlinear stability analysis of vehicle side-slip dynamics using SOS programming. In: 2018 5th International Conference on Electric Vehicular Technology (ICEVT); IEEE; 2018 Oct. p. 1–6.
  • Drummond R, Valmorbida G, Duncan SR. Generalized absolute stability using lyapunov functions with relaxed positivity conditions. IEEE Control Syst Lett. 2018 April;2(2):207–212.
  • Masouleh MI, Limebeer DJN. Non-linear vehicle domain of attraction analysis using sum-of-squares programming. In: 2016 IEEE Conference on Control Applications (CCA); IEEE; 2016 Sep.
  • Masouleh MI, Limebeer DJN. Region of attraction analysis for nonlinear vehicle lateral dynamics using sum-of-squares programming. Veh Syst Dyn. 2017 dec;56(7):1118–1138.
  • Khalil HK. Nonlinear systems. Vol. 3. Upper Saddle River (NJ): Prentice Hall; 2002.
  • Shen X, Diamond S, Udell M, et al. Disciplined multi-convex programming. In: 2017 29th Chinese Control And Decision Conference (CCDC); IEEE; 2017 May. p. 895–900.
  • Rajamani R. Vehicle dynamics and control. New York: Springer Science & Business Media; 2011.
  • Liu W. Introduction to hybrid vehicle system modeling and control. Hoboken: John Wiley & Sons; 2013.
  • Pacejka H. Tire and vehicle dynamics. Oxford: Butterworth-Heinemann; 2006.
  • Dugoff H, Fancher P, Segel L. An analysis of tire traction properties and their influence on vehicle system dynamics. SAE-paper700377. 1970.
  • Hirschberg W, Rill G, Weinfurter H. Tire model TMeasy. Veh Syst Dyn. 2007 Jan;45(sup1):101–119.
  • Papachristodoulou A, Anderson J, Valmorbida G, et al. SOSTOOLS: Sum of squares optimization toolbox for MATLAB. 2013.
  • Sturm JF. Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones. Optim Methods Softw. 1999;11:625–653.
  • Cordeiro RdA. Estimation of tire-ground interaction forces in four-wheel vehicles and their influences during maneuvers in extreme conditions [dissertation]. University of Campinas; 2017.
  • Ataei M, Khajepour A, Jeon S. Model predictive control for integrated lateral stability, traction/braking control, and rollover prevention of electric vehicles. Veh Syst Dyn. 2019 Mar;58(1):49–73.
  • Smith EN, Velenis E, Tavernini D, et al. Effect of handling characteristics on minimum time cornering with torque vectoring. Veh Syst Dyn. 2018;56(2):221–248.
  • Chatzikomis C, Zanchetta M, Gruber P, et al. An energy-efficient torque-vectoring algorithm for electric vehicles with multiple motors. Mech Syst Signal Process. 2019 Aug;128:655–673.
  • Yuan H, Sun X, Gordon T. Unified decision-making and control for highway collision avoidance using active front steer and individual wheel torque control. Veh Syst Dyn. 2019;57(8):1188–1205.
  • Liu P, Rakheja S, Ahmed AKW. Detection of dynamic roll instability of heavy vehicles for open-loop rollover control. In: SAE Technical Paper Series; Nov. SAE International; 1997. Available from: https://doi.org/https://doi.org/10.4271/973263.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.