Publication Cover
Vehicle System Dynamics
International Journal of Vehicle Mechanics and Mobility
Volume 60, 2022 - Issue 4
2,203
Views
11
CrossRef citations to date
0
Altmetric
Articles

Detailed wheel/rail geometry processing using the planar contact approach

ORCID Icon
Pages 1253-1291 | Received 01 May 2020, Accepted 09 Nov 2020, Published online: 29 Nov 2020

References

  • Iwnicki S, editor. Proceedings of the 22nd International Symposium on Dynamics of Vehicles on Roads and Tracks. Manchester: IAVSD; 2011.
  • Rosenberger M, editor. Proceedings of the 24th International Symposium on Dynamics of Vehicles on Roads and Tracks. Graz, Austria: IAVSD; 2015.
  • Spiryagin M, Gordon T, Cole C, et al., editor. Proceedings of the 25th International Symposium on Dynamics of Vehicles on Roads and Tracks. Rockhampton, Queensland, Australia: IAVSD; 2017.
  • Lunden R, Ekberg A, Berg M, et al. Special edition of “Wear” to contain CM2015 proceedings. Wear. 2016;366–367:1–2.
  • Li Z, Núñez A, editors. Proceedings of the 11th International Conference on Contact Mechanics and Wear of Rail/Wheel Systems. The Netherlands: Delft University of Technology; 2018.
  • Meymand S, Keylin A, Ahmadian M. A survey of wheel-rail contact models for rail vehicles. Veh Syst Dyn. 2016;54:386–428.
  • Zhai W, Han Z, Chen Z, et al. Train-track-bridge dynamic interaction: a state-of-the-art review. Veh Syst Dyn. 2019;57:984–1027.
  • Kalker J. The computation of three-dimensional rolling contact with dry friction. Int J Numer Methods Eng. 1979;14:1293–1307.
  • Kalker J. Two algorithms for the contact problem in elastostatics. Delft (The Netherlands): Delft University of Technology, report TWI 82-26; 1982.
  • Kalker J. Numerical calculation of the elastic field in a half-space. Comm Appl Num Meth. 1986;2:401–410. Reprinted as Appendix C in Kalker J. Three-dimensional elastic bodies in rolling contact. Dordrecht: Kluwer Academic Publishers; 1990. (Solid mechanics and its applications; vol. 2).
  • Kalker J. Mathematical models of friction for contact problems in elasticity. Wear. 1986;113:61–77.
  • Kalker J. Three-dimensional elastic bodies in rolling contact. Dordrecht: Kluwer Academic Publishers; 1990. (Solid mechanics and its applications; vol. 2).
  • Shackleton P, Iwnicki S. Comparison of wheel-rail contact codes for railway vehicle simulation: an introduction to the Manchester Contact Benchmark and initial results. Veh Syst Dyn. 2008;46(1–2):129–149.
  • Baeza L, Vila P, Roda A, et al. Prediction of corrugation in rails using a non-stationary contact model. Wear. 2008;265:1156–1162.
  • Willner K. Fully coupled frictional contact using elastic halfspace theory. ASME J Tribol. 2008;130:031405-1–031405-8.
  • Pieringer A, Kropp W, Thompson D. Investigation of the dynamic contact filter effect in vertical wheel/rail interaction using a 2D and a 3D non-Hertzian contact model. Wear. 2011;271(1–2):328–338.
  • Kaiser I. Refining the modelling of vehicle-track interaction. In: Iwnicki S, editor. Proceedings of the 22nd International Symposium on Dynamics of Vehicles on Roads and Tracks. Manchester: IAVSD; 2011. p. 1–6.
  • Blanco-Lorenzo J, Santamaria J, Vadillo E, et al. On the influence of conformity on wheel-rail rolling contact mechanics. Tribol Int. 2016;103:647–667.
  • Vollebregt E. Improving the speed and accuracy of the frictional rolling contact model “CONTACT”. In: Topping B, Adam J, Pallarés F, et al., editors. Proceedings of the 10th International Conference on Computational Structures Technology; Stirlingshire, United Kingdom. Civil-Comp Press; 2010. p. 1–15. DOI:https://doi.org/10.4203/ccp.93.17.
  • Vollebregt E. A new solver for the elastic normal contact problem using conjugate gradients, deflation, and an FFT-based preconditioner. J Comput Phys. 2014;257, Part A:333–351.
  • Zhao J, Vollebregt E, Oosterlee C. A fast nonlinear conjugate gradient based method for 3D concentrated frictional contact problems. J Comput Phys. 2015;288:86–100.
  • Vollebregt E. Numerical modeling of measured railway creep versus creep-force curves with CONTACT. Wear. 2014;314:87–95.
  • Wekken Cvd, Vollebregt E. Local plasticity modelling and its influence on wheel-rail friction. In: Li Z, Núñez A, editors. Proceedings of the 11th International Conference on Contact Mechanics and Wear of Rail/Wheel Systems. The Netherlands: Delft University of Technology; 2018. p. 1013–1018.
  • Vollebregt E, van der Wekken C. Advanced modeling of wheel-rail friction phenomena. VORtech; 2019. TR19-11. FRA project.
  • Vollebregt E, Segal A. Solving conformal wheel-rail rolling contact problems. Veh Syst Dyn. 2014;52(suppl. 1):455–468. DOI:https://doi.org/10.1080/00423114.2014.906634
  • Vollebregt E. Conformal contact: corrections and new results. Veh Syst Dyn. 2018;56(10):1622–1632. DOI:https://doi.org/10.1080/00423114.2018.1424917
  • Vollebregt E. User guide for CONTACT, Rolling and sliding contact with friction. Vtech CMCC; 2020. TR20-01, version 20.2. Available from: www.cmcc.nl/documentation.
  • Pater Ad. The geometrical contact between track and wheelset. Veh Syst Dyn. 1988;17(3):127–140.
  • Shabana A, Zaazaa K, Escalona J, et al. Development of elastic force model for wheel/rail contact problems. J Sound Vib. 2004;269:295–325.
  • Pombo J, Ambrósio J, Silva M. A new wheel-rail contact model for railway dynamics. Veh Syst Dyn. 2007;45:165–189.
  • Shabana A, Zaazaa K, Sugiyama H. Railroad vehicle dynamics: a computational approach. Boca Raton: CRC Press; 2008.
  • Wang K. The track of wheel contact points and the calculation of wheel/rail geometric contact parameters. J Southwest Jiaotong Univ. 1984;1:89–99.
  • Li Z. Wheel-rail rolling contact and its application to wear simulation [dissertation]. Delft University of Technology; 2002.
  • Jin X, Wen Z, Zhang W, et al. Numerical simulation of rail corrugation on a curved track. Comput Struct. 2005;83:2052–2065.
  • Santamaría J, Vadillo E, Gómez J. A comprehensive method for the elastic calculation of the two-point wheel-rail contact. Veh Syst Dyn. 2006;44, suppl:240–250.
  • Malvezzi M, Meli E, Falomi S, et al. Determination of wheel-rail contact points with semianalytic methods. Multibody Syst Dyn. 2008;20:327–358.
  • Sugiyama H, Suda Y. On the contact search algorithms for wheel/rail contact problems. J Comput Nonlinear Dyn Trans ASME. 2009;4:041001.
  • Vollebregt E, Weidemann C, Kienberger A. Use of “CONTACT” in multi-body vehicle dynamics and profile wear simulation: initial results. In: Iwnicki S, editor. Proceedings of the 22nd International Symposium on Dynamics of Vehicles on Roads and Tracks. Manchester: IAVSD; 2011. p. 1–6.
  • Yang X, Gu S, Zhou S, et al. A method for improved accuracy in three dimensions for determining wheel/rail contact points. Veh Syst Dyn. 2015;53:1620–1640.
  • Baeza L, Thompson D, Squicciarini G, et al. Method for obtaining the wheel-rail contact location and its application to the normal problem calculation through “CONTACT”. Veh Syst Dyn. 2018;56:1734–1746.
  • An B, Wen J, Wang P, et al. Numerical investigation into the effect of geometric gap idealisation on wheel-rail rolling contact in presence of yaw angle. Math Probl Eng. 2019;2019:9895267.
  • Vollebregt E. Comments on “the Kalker book of tables for non-Hertzian contact of wheel and rail”. Veh Syst Dyn. 2018;56(9):1451–1459. DOI:https://doi.org/10.1080/00423114.2017.1421767
  • Shabana A. Dynamics of multibody systems. 5th ed. New York: Cambridge University Press; 2020.
  • Vollebregt E. Detailed wheel/rail geometry processing using the conformal contact approach. Multibody Syst Dyn. 2020. DOI:https://doi.org/10.1007/s11044-020-09762
  • Alonso A, Giménez J, García M. Analytical methodology to solve the geometric wheel-rail contact problem taking into account the wheelset yaw angle. In: Rosenberger M, editor. Proceedings of the 24th International Symposium on Dynamics of Vehicles on Roads and Tracks. Graz, Austria: IAVSD; 2015. p. 1–9.
  • Liu B, Bruni S, Vollebregt E. A non-Hertzian method for solving wheel-rail normal contact problem taking into account the effect of yaw. Veh Syst Dyn. 2016;54(9):1226–1246.
  • Vollebregt E. Abstract level parallelization of finite difference methods. Sci Program. 1997;6:331–344.
  • Boor CD. Practical guide to splines. New York: Springer-Verlag; 1978.
  • Lundberg G. Elastische Berührung zweier Halbräume. Forschung ad Gebeite des Ingenieurwesens. 1939;10:201.
  • Fujiwara H, Kobayashi T, Kawase T, et al. Optimized logarithmic roller crowning design of cylindrical roller bearings and its experimental demonstration. Tribol Trans. 2010;53:909–916.
  • Johnson K. Contact mechanics. Cambridge: Cambridge University Press; 1985.
  • Dierckx P. Algorithms for smoothing data with periodic and parametric splines. Comput Gr Image Process. 1982;20:171–184.
  • Press W, Teukolsky S, Vetterling W, et al. Numerical recipes in Fortran 77: the art of scientific computing. 2nd ed. Cambridge: Cambridge University Press; 1992.
  • Weinert H. A fast compact algorithm for cubic spline smoothing. Comput Statist Data Anal. 2009;53:932–940.
  • Pollock D. Smoothing with cubic splines. London: Queen Mary and Westfield College, The University of London; 1999.
  • Savitzky A, Golay M. Smoothing and differentiation of data by simplified least squares procedures. Anal Chem. 1964;36:1627–1639.
  • Moreton H. Minimum curvature variation curves, networks, and surfaces for fair free-form shape design [dissertation]. University of California at Berkeley; 1992.
  • Chernov N, Lesort C. Least squares fitting of circles. J Math Imaging Vis. 2005;23:239–252.
  • Escalona J, Sugiyama H, Shabana A. Modelling of structural flexibility in multibody railroad vehicle systems. Veh Syst Dyn. 2013;51(7):1027–1058.
  • Mikheev G, Pogorelov D, Rodikov A. Methods of simulation of railway wheelset dynamics taking into account elasticity. In: Proceedings of the First International Conference on Rail Transportation; Chengdu, China; 2017. p. 1–11.
  • Zaazaa K, Schwab A. Review of Joost Kalker's wheel-rail contact theories and their implementation in multibody codes. In: Proceedings of the ASME 2009 International Design Engineering Technical Conferences; September; 2009. p. 1–12.
  • Piotrowski J, Bruni S, Liu B. Reply to comments on “the Kalker book of tables for non-Hertzian contact of wheel and rail” by E.A.H. Vollebregt. Veh Syst Dyn. 2018;56:1460–1469. DOI:https://doi.org/10.1080/00423114.2018.1437274
  • Piotrowski J, Kalker J. The elastic cross-influence between two quasi-Hertzian contact zones. Veh Syst Dyn. 1988;17:337–355.
  • Aceituno J, Urda P, Briales E, et al. Analysis of the two-point wheel-rail contact scenario using the knife-edge-equivalent contact constraint method. Mech Mach Theory. 2020;148:103803.
  • Piotrowski J, Chollet H. Wheel-rail contact models for vehicle system dynamics inlcuding multi-point contact. Veh Syst Dyn. 2005;43:455–483.
  • Wickens A. Fundamentals of rail vehicle dynamics: guidance and stability. Lisse: Swets and Zetlinger; 2003.
  • Shabana A, Tobaa M, Marquis B, et al. Effect of the linearization of the kinematic equations in railroad vehicle system dynamics. ASME J Comput Nonlinear Dyn. 2006;1:25–34.
  • Liu B, Bruni S. Analysis of wheel-roller contact and comparison with the wheel-rail case. Urban Rail Transit. 2015;1(4):215–226.
  • Pombo J, Ambrósio J. A wheel/rail contact model for rail guided vehicles dynamics. In: Ambrósio J, editor. Proceedings of the ECCOMAS Thematic Conference on Advances in Computational Multibody Dynamics; Lisbon, Portugal; 2003. p. 47–56.
  • Shabana A, Tobaa M, Sugiyama H, et al. On the computer formulations of the wheel/rail contact problem. Nonlinear Dyn. 2005;40:169–193.
  • Burgelman N, Li Z, Dollevoet R. Effect of the longitudinal contact location on vehicle dynamics simulation. Math Probl Eng. 2016;2016:1901089.
  • Zhang W. Calculation method of wheel/roller (rail) spatial contact point. China Railway Sci. 2006;27:76–79. In Chinese.
  • Zhang W, Dai H, Shen Z, et al. Roller rigs. In: Iwnicki S, editor. Handbook of railway vehicle dynamics. Chapter 14. Boca Raton: CRC Press; 2006. p. 457–506.
  • Zhu B, Zeng J, Zhang D, et al. A non-Hertzian wheel-rail contact model considering wheelset yaw and its application in wheel wear prediction. Wear. 2019;432-433:202958.
  • Pater Ad. The general theory of the motion of a single wheelset moving through a curve with constant radius and cant. Z Angew Math Mech. 1981;61(7):277–292.
  • Auciello J, Meli E, Falomi S, et al. Dynamic simulation of railway vehicles: wheel/rail contact analysis. Veh Syst Dyn. 2009;47:867–899.
  • Marques F, Magalhães H, Pombo J, et al. A three-dimensional approach for contact detection between realistic wheel and rail surfaces for improved railway dynamics. Mech Mach Theory. 2020;149:103825.
  • Zeng Y, Shu X, Wang C, et al. Study on three-dimensional wheel/rail contact geometry using generalized projection contour method. In: Zhang W, editor. Proceedings of the 23rd International Symposium on Dynamics of Vehicles on Roads and Tracks; August; Qingdao, P.R. China. IAVSD; 2013. p. 1–10.
  • Shackleton P, Iwnicki S. Wheel-rail contact benchmark, version 3.0 [Rail technology unit, Manchester metropolitan university]; 2006.
  • Magel E, Oldknow K. Quality indices for managing rail through grinding. In: Li Z, Núñez A, editors. Proceedings of the 11th International Conference on Contact Mechanics and Wear of Rail/Wheel Systems. The Netherlands: Delft University of Technology; 2018. p. 658–667.