Publication Cover
Vehicle System Dynamics
International Journal of Vehicle Mechanics and Mobility
Volume 60, 2022 - Issue 8
969
Views
8
CrossRef citations to date
0
Altmetric
Articles

Coupled vibration analysis of suspended monorail train and curved bridge considering nonlinear wheel-track contact relation

, , , &
Pages 2658-2685 | Received 12 Jan 2021, Accepted 10 Apr 2021, Published online: 27 Apr 2021

References

  • Grava S. Urban transportation systems, choices for communities. New York: McGraw-Hill; 2003.
  • Zhai WM, Zhao CF. Frontiers and challenges of sciences and technologies in modern railway engineering. J Southwest Jiaotong Univ. 2016;51(2):209–226.
  • Boehm E, Frisch H. The new operating system of the H-train in dortmun. Verkehr Technik. 1994;47(10):465–470.
  • Rahier HW, Scharf P. Sicherheitstechnische prüfung derfahrerlosen kabinenbahn des flugha-fens duesseldorf. Signal Draht. 2002;94(10):20–22.
  • He Q, Cai C, Zhu S, et al. Field measurement of the dynamic responses of a suspended monorail train–bridge system. P I Mech Eng F J Rai. 2020;234(10):1093–1108.
  • Zhai WM, Han Z, Chen Z, et al. Train–track–bridge dynamic interaction: a state-of-the-art review. Veh Syst Dyn. 2019;57(7):984–1027.
  • Yang YB, Lin CW. Vehicle-bridge interaction dynamics and potential applications. J Sound Vib. 2005;284(1-2):205–226.
  • Zhai WM, Xia H, Cai CB, et al. High-speed train–track–bridge dynamic interactions – part I: theoretical model and numerical simulation. Int J Rail Transp. 2013;1:3–24.
  • Zhu Z, Zhang L, Gong W, et al. An efficient hybrid method for dynamic interaction of train–track–bridge coupled system. Can J Civ Eng. 2020;47(9):1084–1093.
  • Cantero D, Arvidsson T, Obrien E, et al. Train-track-bridge modelling and review of parameters. Struct Infrastruct E. 2015;12(9):1051–1064.
  • Dimitrakopoulos EG, Zeng Q. A three-dimensional dynamic analysis scheme for the interaction between trains and curved railway bridges. Comput Struct. 2015;149(3):43–60.
  • Tanabe M, Sogabe M, Wakui H, et al. Exact time integration for dynamic interaction of high-speed train and railway structure including derailment during an earthquake. J Comput Nonlin Dyn. 2016;11(3):031004.
  • Zhang N, Xia H. Dynamic analysis of coupled vehicle–bridge system based on inter-system iteration method. Comput Struct. 2013;114(1):26–34.
  • Montenegro PA, Neves SGM, Calçada R, et al. Wheel–rail contact formulation for analyzing the lateral train–structure dynamic interaction. Comput Struct. 2015;152(3):200–214.
  • Dinh VN, Kim KD, Warnitchai P. Dynamic analysis of three-dimensional bridge-high-speed train inter-actions using a wheel-rail contact model. Eng Struct. 2009;31(12):3090–3106.
  • Antolín P, Zhang N, Goicolea JM, et al. Consideration of nonlinear wheel–rail contact forces for dynamic vehicle–bridge interaction in high-speed railways. J Sound Vib. 2013;332(5):1231–1251.
  • Iwnicki SD, Brickle BV. The dynamic behaviour of a rail locomotive with solid rubber tyres and flanged steel wheels. Veh Syst Dyn. 1988;17(1):173–185.
  • Xia H, Zhang N. Dynamic analysis of railway bridge under high-speed trains. Comput Struct. 2005;83(23-24):1891–1901.
  • Montenegro PA, Calçada R, Vila Pouca N, et al. Running safety assessment of trains moving over bridges subjected to moderate earthquake. Earthq Eng Struct D. 2016;45(3):483–504.
  • Ling L, Dhanasekar M, Thambiratnam DP. Dynamic response of the train–track–bridge system subjected to derailment impacts. Veh Syst Dyn. 2018;56(9):638–657.
  • Matin A, Elias S, Matsagar V. Distributed multiple tuned mass dampers for seismic response control in bridges. Proc Inst Civil Eng Struct Build. 2019;173(3):1–18.
  • Chen Z, Han Z, Zhai W, et al. TMD design for seismic vibration control of high-pier bridges in Sichuan–Tibet Railway and its influence on running trains. Veh Syst Dyn. 2019;57(2):207–225.
  • Naeimi M, Tatari M, Esmaeilzadeh A, et al. Dynamic interaction of the monorail–bridge system using a combined finite element multibody-based model. Proc Inst Mech Eng. 2015;229(2):132–151.
  • Leng H, Ren L, Ji Y, et al. Radial adjustment mechanism of a newly designed coupled-bogie for the straddle-type monorail vehicle. Veh Syst Dyn. 2020;58(6):1407–1427.
  • Lee CH, Kawatani M, Kim CW, et al. Dynamic response of a monorail steel bridge under a moving train. J Sound Vib. 2006;294(3):562–579.
  • Zhou J, Du Z, Yang Z, et al. Dynamic parameters optimization of straddle-type monorail vehicles based multiobjective collaborative optimization algorithm. Veh Syst Dyn. 2020;58(2):357–376.
  • Cai C, He Q, Zhu S, et al. Dynamic interaction of suspension-type monorail vehicle and bridge: numerical simulation and experiment. Mech Syst Signal Pr. 2019;118(3):388–407.
  • He Q, Cai C, Zhu S, et al. An improved dynamic model of suspended monorail train-bridge system considering a tyre model with patch contact. Mech Syst Signal Pr. 2020;144(10):106865.
  • He Q, Cai C, Zhu S, et al. Key parameter selection of suspended monorail system based on vehicle–bridge dynamical interaction analysis. Veh Syst Dyn. 2019;58(2):339–356.
  • Bao Y, Li Y, Ding J. A case study of dynamic response analysis and safety assessment for a suspended monorail system. Int J Env Res Pub He. 2016;13(11):1121.
  • Jiang Y, Wu P, Zeng J. Researches on the resonance of a new type of suspended monorail vehicle-bridge coupling system based on modal analysis and rigid-flexible coupling dynamics. Veh Syst Dyn. 2021;59(9):135–154.
  • Hurty WC. Vibrations of structural systems by component mode synthesis. J Eng Mech Divis. 1960;86(4):51–70.
  • Hurty WC. Dynamic analysis of structural systems using component modes. AIAA J. 1965;3(4):678–685.
  • Hou SN. Review of modal synthesis techniques and new approach. Shock Vib Bull. 1969;40(9):25–399.
  • Zhang W, Lv S, Ni Y. Parametric aeroelastic modeling based on component modal synthesis and stability analysis for horizontally folding wing with hinge joints. Nonlinear Dyn. 2018;92(2):1–11.
  • Zucc S. On the dual Craig-Bampton method for the forced response of structures with contact interfaces. Nonlinear Dyn. 2017;87(11):2445–2455.
  • Craig RR, Bampton CC. Coupling of substructures for dynamic analyses. AIAA J. 1968;6(7):1313–1319.
  • Lou M, Ghobarah A, Aziz TS. A modal synthesis method for dynamic substructuring. Eur J Mech A Solids. 1993;12(12):403–416.
  • Suarez LE, Singh MP. Modal synthesis method for general dynamic systems. J Eng Mech. 1992;118(7):1488–1503.
  • Agabein ME. The effect of various damping assumptions on the dynamic response of structures. Bull Int Inst Seismol Earthq Eng. 1971;8(1):217–236.
  • Park KC. An improved stiffly stable method for direct integration of nonlinear structural dynamic equations. Int J Appl Mech. 1975;42(6):464–470.
  • Fiala E. Seitenkrafte am Rollenden Luftreifen. V.d.I. 1954;96:973–979.
  • DBJ51/T 099. Standard for design of suspended monorail transit. Chengdu: Southwest Jiaotong University Press, 2018. (in Chinese).