Publication Cover
Vehicle System Dynamics
International Journal of Vehicle Mechanics and Mobility
Volume 61, 2023 - Issue 1
649
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

A predictive neural hierarchical framework for on-line time-optimal motion planning and control of black-box vehicle models

ORCID Icon, ORCID Icon, ORCID Icon, , & ORCID Icon
Pages 83-110 | Received 26 Apr 2021, Accepted 14 Dec 2021, Published online: 13 Feb 2022

References

  • Altché F, Polack P, de La Fortelle A. High-speed trajectory planning for autonomous vehicles using a simple dynamic model. In: 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC); 2017. p. 1–7.
  • Veneri M, Massaro M. A free-trajectory quasi-steady-state optimal-control method for minimum lap-time of race vehicles. Veh Syst Dyn. 2020;58(6):933–954.
  • Novi T, Liniger A, Capitani R. Real-time control for at-limit handling driving on a predefined path. Veh Syst Dyn. 2020;58(7):1007–1036.
  • Devineau G, Polack P, Altché F, et al. Coupled longitudinal and lateral control of a vehicle using deep learning. In: 2018 IEEE International Conference on Intelligent Transportation Systems (ITSC); 2018 Nov. p. 642–649.
  • Verschueren R, Zanon M, Quirynen R, et al. Time-optimal race car driving using an online exact Hessian based nonlinear mpc algorithm. In: 2016 European Control Conference (ECC); 2016. p. 141–147.
  • Pagot E, Piccinini M, Biral F. Real-time optimal control of an autonomous rc car with minimum-time maneuvers and a novel kineto-dynamical model. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2020. p. 2390–2396.
  • Rosolia U, Borrelli F. Learning how to autonomously race a car: a predictive control approach. IEEE Trans Control Syst Technol. 2020;28(6):1–7.
  • Vázquez JL, Brühlmeier M, Liniger A, et al. Optimization-based hierarchical motion planning for autonomous racing. 2020. Available from: https://arxiv.org/pdf/2003.04882.pdf.
  • Kabzan J, Hewing L, Liniger A, et al. Learning-based model predictive control for autonomous racing. IEEE Robot Autom Lett. 2019;4(4):3363–3370.
  • Liniger A, Domahidi A, Morari M. Optimization-based autonomous racing of 1:43 scale rc cars. Optim Control Appl Methods. 2015 Sept;36:628–647.
  • Galvani M, Biral F, Nguyen BM, et al. Four wheel optimal autonomous steering for improving safety in emergency collision avoidance manoeuvres. In: 2014 IEEE 13th International Workshop on Advanced Motion Control (AMC); 2014. p. 362–367.
  • Frasch JV, Gray A, Zanon M, et al. An auto-generated nonlinear mpc algorithm for real-time obstacle avoidance of ground vehicles. In: 2013 European Control Conference (ECC); 2013. p. 4136–4141.
  • Rosolia U, De Bruyne S, Alleyne AG. Autonomous vehicle control: A nonconvex approach for obstacle avoidance. IEEE Trans Control Syst Technol. 2017;25(2):469–484.
  • Guiggiani M. The science of vehicle dynamics: handling, braking, and ride of road and race cars. Dordrecht: Springer Netherlands; 2014.
  • Pacejka H, Besselink I, Besselink I. Tire and vehicle dynamics. Oxford: Elsevier Science; 2012.
  • Paden B, Çáp M, Yong SZ, et al. A survey of motion planning and control techniques for self-driving urban vehicles. IEEE Trans Intel Veh. 2016;1(1):33–55.
  • González D, Pérez J, Milanés V, et al. A review of motion planning techniques for automated vehicles. IEEE Trans Intell Transp Syst. 2016;17(4):1135–1145.
  • Rawlings J, Mayne D, Diehl M. Model predictive control: theory, computation, and design. California: Nob Hill Publishing; 2017.
  • Faulwasser T, Grüne L, Müller MA. Economic nonlinear model predictive control. 2018.
  • Grüne L, Pannek J. Nonlinear model predictive control: theory and algorithms. London: Springer Publishing Company, Incorporated; 2013.
  • Bianco ND, Bertolazzi E, Biral F, et al. Comparison of direct and indirect methods for minimum lap time optimal control problems. Vehicle System Dynamics. 2019;57(5):665–696.
  • Bertolazzi E, Biral F, Da Lio M. Symbolic-numeric efficient solution of optimal control problems for multibody systems. J Comput Appl Math. 2006;185(2):404–421. Special Issue: International Workshop on the Technological Aspects of Mathematics.
  • Bertolazzi E, Biral F, Lio M. Real-time motion planning for multibody systems–real life application examples. Multibody Syst Dyn. 2007 Apr;17:119–139.
  • Biral F, Bertolazzi E, Bosetti P. Notes on numerical methods for solving optimal control problems. IEEJ J Indust Appl. 2016 Mar;5:154–166.
  • Pontryagin L. Mathematical theory of optimal processes. Montreux, Switzerland: Taylor & Francis; 1987.
  • Tavernini D, Velenis E, Lot R, et al. On the optimality of handbrake cornering. In: 52nd IEEE Conference on Decision and Control; 2013. p. 2233–2238.
  • Tavernini D, Massaro M, Velenis E, et al. Minimum time cornering: the effect of road surface and car transmission layout. Veh Syst Dyn. 2013;51(10):1533–1547.
  • Lot R, Bianco ND. Lap time optimisation of a racing go-kart. Veh Syst Dyn. 2016;54(2):210–230.
  • Bianco ND, Roberto L, Gadola M. Minimum time optimal control simulation of a gp2 race car. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 2018 Oct;232(9):1180–1195.
  • Biral F, Bertolazzi E, Bortoluzzi D, et al. Development and testing of an autonomous driving module for critical driving conditions. In: ASME International Mechanical Engineering Congress and Exposition. Vol. 17: Transportation Systems; 2008. p. 361–370.
  • Berntorp K, Magnusson F. Hierarchical predictive control for ground-vehicle maneuvering. In: 2015 American Control Conference (ACC); 2015. p. 2771–2776.
  • Altché F, Polack P, de La Fortelle A. A simple dynamic model for aggressive, near-limits trajectory planning. In: 2017 IEEE Intelligent Vehicles Symposium (IV); 2017. p. 141–147.
  • Hewing L, Liniger A, Zeilinger MN. Cautious nmpc with Gaussian process dynamics for autonomous miniature race cars. In: 2018 European Control Conference (ECC); 2018. p. 1341–1348.
  • Goodfellow I, Bengio Y, Courville A. Deep learning. MIT Press; 2016.
  • Dreyfus G. Neural networks: methodology and applications. Berlin, Heidelberg: Springer; 2005.
  • Graves A. Supervised sequence labelling with recurrent neural networks. Berlin: Springer; 2012. Studies in Computational Intelligence
  • Narendra KS, Parthasarathy K. Identification and control of dynamical systems using neural networks. IEEE Trans Neural Netw. 1990;1(1):4–27.
  • Oh S-Y, Yim Y. Modeling of vehicle dynamics from real vehicle measurements using a neural network with two-stage hybrid learning for accurate long-term prediction. In: Proceedings 1999 IEEE International Symposium on Computational Intelligence in Robotics and Automation. CIRA'99 (Cat. No.99EX375); 1999. p. 83–88.
  • Rutherford S, Cole D. Modelling nonlinear vehicle dynamics with neural networks. Int J Veh Des. 2010 Jul;53:260–287.
  • Hunt K, Kalkkuhl J, Fritz H, et al. Constructive empirical modelling of longitudinal vehicle dynamics using local model networks. Control Eng Pract. 1996;4(2):167–178.
  • Lio MD, Bortoluzzi D, Papini GPR. Modelling longitudinal vehicle dynamics with neural networks. Veh Syst Dyn. 2020;58(11):1675–1693.
  • Da Lio M, Donà R, Papini GPR, et al. A mental simulation approach for learning neural-network predictive control (in self-driving cars). IEEE Access. 2020;8:192041–192064.
  • Kuutti S, Bowden R, Jin Y, et al. A survey of deep learning applications to autonomous vehicle control. ArXiv. 2019.
  • Moon J, Bae I, Kim S. An inverse vehicle model for a neural-network-based integrated lateral and longitudinal automatic parking controller. Electronics. 2019 Dec;8:1452.
  • Stocco D, Bertolazzi E. Acme: A small 3d geometry library. SoftwareX. 2021;16:100845.
  • Pacejka HB, Bakker E. The magic formula tyre model. Veh Syst Dyn. 1992;21(S1):1–18.
  • Kasprzak EM, Gentz D. The formula sae tire test consortium-tire testing and data handling. SAE Technical Paper. 2006.
  • Cossalter V, Lio MD, Lot R, et al. A general method for the evaluation of vehicle manoeuvrability with special emphasis on motorcycles. Veh Syst Dyn. 1999;31(2):113–135.
  • Lot R, Biral F. A curvilinear abscissa approach for the lap time optimization of racing vehicles. IFAC Proc Vol. 2014;47(3):7559–7565. 19th IFAC World Congress
  • James SS, Anderson SR, Lio MD. Longitudinal vehicle dynamics: A comparison of physical and data-driven models under large-scale real-world driving conditions. IEEE Access. 2020;8:73714–73729.
  • Astrom KJ, Hagglund T. Advanced PID control. Advanced PID control: ISA; 2006.
  • Visioli A. Modified anti-windup scheme for pid controllers. IEE Proc Control Theory Appl. 2003;150(1):49–54.
  • Viehweger M, Vaseur C, van Aalst S, et al. Vehicle state and tyre force estimation: demonstrations and guidelines. Veh Syst Dyn. 2021;59(5):675–702.
  • Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997 Dec;9:1735–80.
  • Gers FA, Schmidhuber J, Cummins F. Learning to forget: continual prediction with lstm. In: 1999 Ninth International Conference on Artificial Neural Networks ICANN 99. (Conf. Publ. No. 470). Vol. 2; 1999. p. 850–855.
  • Dozat T. Incorporating nesterov momentum into adam. 2016.
  • Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks. J Mach Learn Res Proc Track. 2010 Jan;9:249–256.
  • Abadi M, Agarwal A, Barham P, et al. TensorFlow: large-scale machine learning on heterogeneous systems; 2015. Software available from tensorflow.org; Available from: http://tensorflow.org/.
  • Wächter A, Biegler L. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math Program. 2006 Mar;106:25–57.
  • Kerrigan E, Maciejowski J. Soft constraints and exact penalty functions in model predictive control. 2000;.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.