Publication Cover
Vehicle System Dynamics
International Journal of Vehicle Mechanics and Mobility
Volume 61, 2023 - Issue 11
646
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Experimental methods to measure the lateral characteristics of bicycle tyres – a review

, &
Pages 2738-2760 | Received 04 May 2022, Accepted 23 Sep 2022, Published online: 14 Nov 2022

References

  • European Environment Agency. Annual report 2019, EU policies – Energy; 2019, p. 1–5.
  • Colli E, Küster F, Žganec M. The state of national cycling strategies in Europe (2021). European Cyclists' Federation (ECF); 2021.
  • EU Ministers for Transport. Declaration on cycling as a climate friendly transport mod. 2015; p. 5.
  • ONU. Sustainable development goals: guidelines for the use of the SDG. United Nations Department of Global Communications; 2020 May, p. 1–68.
  • European Commission. EU economy and society to meet climate ambitions. EU economy and society to meet climate ambitions. July 2021.
  • European Commission. Traffic safety basic facts on cyclists. June 2018, p. 24.
  • European Cyclists’ Federation. Cycling beyond the crisis: COVID-19 measures tracker. European Cyclists’ Federation. 2020; 516256.
  • World Economic Forum. Riding out the pandemic: how COVID-19 turned Europe into a cycle superpower, p. 2020, 2020.
  • The recovery and resilience facility – joint ECF and CIE recommendations for the national recovery and resilience. October 2020.
  • Deloitte’s TMT. Technology, media, and telecommunications predictions 2020. 2020. [Online]. Available from: https://www2.deloitte.com/content/dam/insights/us/articles/722835_tmt-predictions-2020/DI_TMT-Prediction-2020.pdf
  • Corwin S, Zarif R, Berdichevskiy A, et al. The futures of mobility after COVID-19. Scenarios for transportation in a postcoronavirus world. Deloitte Development LLC; 2020, p. 1–21.
  • World Health Organization. Cyclist safety: an information resource for decision-makers and practitioners. 2020.
  • de Guerre LEVM, Sadiqi S, Leenen LPH, et al. Injuries related to bicycle accidents: an epidemiological study in The Netherlands. Eur J Trauma Emerg Surg. 2020;46(2):413–418. doi:10.1007/s00068-018-1033-5
  • Liu P, Marker S. Evaluation of contributory factors’ effects on bicycle-car crash risk at signalized intersections. J Transp Saf Secur. 2020;12(1):82–93. doi:10.1080/19439962.2019.1591555
  • Tempia J, Jiang M, Sato H, et al. Risk factor analysis of bicycle accidents considering geometric features and bicycle road at intersections. Proc City Plann Inst Jpn Chubu Branch. 2020;31:31–36. doi:10.11361/cpijchubu.31.0_31
  • Skoczyński P. Analysis of solutions improving safety of cyclists in the road traffic. Appl Sci. 2021;11(9):3771. doi:10.3390/app11093771
  • Rostami AD, Katthe A, Sohrabi A, et al. Predicting critical bicycle-vehicle conflicts at signalized intersections. J Adv Transp. 2020;2020:1–16; doi:10.1155/2020/8816616
  • Sharp RS. The stability and control of motorcycles. J Mech Eng Sci. 1971;13(5):316–329.
  • Hamer M. Brimstone and bicycles. New Scientist. 2005;2428:48–49.
  • Livesey A. Bicycle engineering and technology. Routledge; 2020. doi:10.1201/9780367816841
  • Gordon Wilson D, Schmidt T, Papadopoulos JM. Bicycle science. 4th ed. MIT Press; 2020.
  • Glaisher JWL. The quarterly journal of pure and applied mathematics. Vol. 30. Cambridge, England: Longmans, Green and Co; 1899.
  • Papadopoulos JM. Bike tech. 1988, p. 13–15.
  • Glaisher JWL. The messenger of mathematics. Amsterdam: Swets & Zeitliger N.V.; 1969.
  • Dohring E. Stability of single-track vehicles. Buffalo, NY: Forschung, Cornell Aeronautical Laboratory; 1955.
  • Collins RN. A mathematical analysis of the stability of two wheeled vehicles. Cambridge, MA: University of Wisconsin; 1963.
  • Scott Hand R. Comparisons and stability analysis of linearized equations of motion for a basic bicycle model [MSc. thesis]. Cornell University; 1988.
  • Meijaard JP, Papadopoulos JM, Ruina A, et al. Linearized dynamics equations for the balance and steer of a bicycle: a benchmark and review. Proc R Soc A. 2007;463:1955–1982.
  • Romano L, Bruzelius F, Jacobson B. Brush tyre models for large camber angles and steering speeds. Veh Syst Dyn. 2022;60(4):1341–1392. doi:10.1080/00423114.2020.1854320
  • Fujioca T, Goda K. Discrete brush tire model for calculating tire forces with large camber angle. Veh Syst Dyn. 1996;25(sup1):200–216. doi:10.1080/00423119608969196
  • Svendenius J, Wittenmark B. Brush tire model with increased flexibility. European Control Conference, ECC; 2003, no. Dec, p. 1863–1868. doi:10.23919/ecc.2003.7085237
  • Evangelou S, Limebeer MDJN, Rodriguez MT. Influence of road camber on motorcycle stability. J Appl Mech. 2008;75(6):0610201–06102012. doi:10.1115/1.2937140
  • Lot R, Massaro M. A combined model of tire and road surface for the dynamic analysis of motorcycles handling, no. 14, 2006.
  • Sharp RS. On the stability and control of the bicycle. Appl Mech Rev. 2008;61(1-6):0608031–06080324. doi:10.1115/1.2983014
  • Cossalter V, Doria A, Formentini M, et al. Experimental and numerical analysis of the influence of tyres properties on the straight running stability of a sport-touring motorcycle. Veh Syst Dyn. 2012;50(3):357–375. doi:10.1080/00423114.2011.587520
  • Doria A, Marconi E, Munoz L, et al. An experimental-numerical method for the prediction of on-road comfort of city bicycles. Veh Syst Dyn. 2021;59(9):1376–1396. doi:10.1080/00423114.2020.1759810
  • Bulsink VE, Doria A, van de Belt D, et al. The effect of tyre and rider properties on the stability of a bicycle. Adv Mech Eng. 2015;7(12):168781401562259. doi:10.1177/1687814015622596
  • MSC Software. Introducing Adams/tire.
  • Starr GP. ADAMS guide. February 2010, p. 1–46.
  • Souh B. Influence of tire side forces on bicycle self-stability. J Mech Sci Technol. 2015;29(8):3131–3140. doi:10.1007/s12206-015-0711-z
  • Plöchl M, Edelmann J, Angrosch B, et al. On the wobble mode of a bicycle. Veh Syst Dyn. 2012;50(3):415–429. doi:10.1080/00423114.2011.594164
  • Meijaard JP, Papadopoulos JM, Ruina A, et al. Linearized dynamics equations for the balance and steer of a bicycle: a benchmark and review. Proc R Soc A: Math Phys Eng Sci. 2007;463(2084):1955–1982. doi:10.1098/rspa.2007.1857
  • Limebeer DJN, Sharp RS. Bicycles, motorcycles, and models. IEEE Control Syst. 2006;26(5):34–61. doi:10.1109/MCS.2006.1700044
  • Tomiati N, Magnani G, Scaglioni B, et al. Model based analysis of shimmy in a racing bicycle. Proceedings of the 12th International Modelica Conference; 2017 May 15–17; Prague, Czech Republic. Vol. 132, p. 441–447. doi:10.3384/ecp17132441
  • Tomiati N, Colombo A, Magnani G. A nonlinear model of bicycle shimmy. Veh Syst Dyn. 2019;57(3):315–335. doi:10.1080/00423114.2018.1465574
  • Moore JK. Human control of a bicycle [PhD thesis]. University of California; 2012. [Online]. Available from: http://moorepants.github.com/dissertation
  • Klinger F, Nusime J, Edelmann J, et al. Wobble of a racing bicycle with a rider hands on and hands off the handlebar. Veh Syst Dyn. 2014;52(Suppl. 1):51–68. doi:10.1080/00423114.2013.877592
  • Doria A, Tognazzo M, Cusimano G, et al. Identification of the mechanical properties of bicycle tyres for modelling of bicycle dynamics. Veh Syst Dyn. 2013;51(3):405–420. doi:10.1080/00423114.2012.754048
  • Doria A, Roa Melo SD. On the influence of tyre and structural properties on the stability of bicycles. Veh Syst Dyn. 2018;56(6):947–966. doi:10.1080/00423114.2017.1403032
  • Wei Y, Oertel C, Li X, et al. A theoretical model for the tread slip and the effective rolling radius of the tyres in free rolling. Proc Inst Mech Eng Part D: J Automob Eng. 2017;231(11):1461–1470. doi:10.1177/0954407016675227
  • Cossalter V. Motorcycle dynamics. 2006.
  • Mastinu G, Ploechl M. Road and off-road vehicle system dynamics handbook. Boca Raton, FL: Taylor & Francis Group, LLC; 2014.
  • Pottinger MG. The pneumatic tire. US Department of Transportation; 2006, p. 286–363.
  • SAE International. SAE J670 Revised JAN2008-2. 1952;4970:724–776.
  • Dressel AE. Measuring and modeling the mechanical properties of bicycle tires [PhD thesis]. University of Wisconsin-Milwaukee; 2013. [Online]. Available from: https://dc.uwm.edu/etd/386
  • Dressel A, Sadauckas J. Characterization and modelling of various sized mountain bike tires and the effects of tire tread knobs and inflation pressure. Appl Sci. 2020;10(9):3156. doi:10.3390/app10093156
  • Douglas Roland R, Lynch JP. Bicycle dynamics tire characteristics and rider modeling. Buffalo, NY: Cornell Aeronautical Laboratory; 1972.
  • Baltus N. Literature research about bicycle tyre measurements and tyre models [literature research for MSc. thesis]. Delft University of Technology; 2019.
  • Baltus N. About the mechanical properties of bicycle tyres [MSc. thesis]. Delft University of Technology; 2019.
  • Cole YHKDJ. Prediction of vehicle stability using a ‘back to back’ tyre test method. Int J Veh Des. 2011;26(5):573–582.
  • Smurra M, Spinella F. Advanced testing of bicycle tyres [MSc. thesis]. Politecnico di Milano; 2018.
  • Bakker E, Nyborg L, Pacejka HB. Tyre modelling for use in vehicle dynamics studies. SAE Technical Papers. 1987;1:10–11. doi:10.4271/870421
  • Joseph BG, Archibald M, Windes P. Experimental testing for the cornering stiffnesses of bike tires. Proceedings of the 2012 ASEE North-Central Section Conference, 2012.
  • Windes P, Archibald M, Joseph B. Experimental determination of bike tire stiffnesses. Proceedings of the 2013 ASEE North-Central Section Conference, 2013.
  • Cossalter V, Doria A, Lot R, et al. Dynamic properties of motorcycle and scooter tires: measurement and comparison. Veh Syst Dyn. 2003;39(5):329–352. doi:10.1076/vesd.39.5.329.14145
  • Dressel A, Rahman A. Measuring sideslip and camber characteristics of bicycle tyres. Veh Syst Dyn. 2012;50(8):1365–1378. doi:10.1080/00423114.2011.615408
  • Pacejka HB, Besselink IJM. Magic formula tyre model with transient properties. Veh Syst Dyn. 1997;27(sup001):234–249. doi:10.1080/00423119708969658
  • Maier O, Hillenbrand S, Wrede J, et al. Vertical and longitudinal characteristics of a bicycle tire. Tire Sci Technol. 2018;46(3):153–173.
  • Mastinu G, Gobbi M, Previati G, et al. Measurement of forces and moments of bicycle tyres. Bicycle and Motorcycle Dynamics 2019 Symposium on the Dynamics and Control of Single Track Vehicles. 2019 Sep 9–11; University of Padova, Italy. 51(3):405–420.
  • Dell’Orto G, Ballo FM, Mastinu G, et al. Bicycle tyres – development of a new test-rig to measure mechanical characteristics. Measurement (Mahwah NJ). 2022;202:111813, doi:10.1016/j.measurement.2022.111813
  • Mastinu G, Pennati M, Gobbi M. Design and construction of a test rig for assessing tyre characteristics at rollover. SAE Technical Papers. No. 724; 2002. doi:10.4271/2002-01-2077
  • Crinò FP. Measuring and identifying the mechanical properties of bicycle tyres. [MSc. thesis]. Politecnico di Milano; 2021.
  • Uslenghi L, Vaccari L. Indoor testing of cycling tyres and quality assurance of ‘Vetyt’ test rig [MSc. thesis]. Politecnico di Milano; 2021.
  • Lattuada A, Mastinu G, Matrascia G. Straight motion of road vehicles. 2020. doi:10.4271/9781468601312

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.