Publication Cover
Vehicle System Dynamics
International Journal of Vehicle Mechanics and Mobility
Volume 62, 2024 - Issue 8
359
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A fast method for solving conformal rolling contact problems

ORCID Icon, ORCID Icon, , & ORCID Icon
Pages 1903-1928 | Received 19 May 2023, Accepted 03 Oct 2023, Published online: 11 Oct 2023

References

  • Liu B, Bruni S. Comparison of wheel–rail contact models in the context of multibody system simulation: Hertzian versus non-Hertzian. Veh Syst Dyn. 2022;60(3):1076–1096. doi:10.1080/00423114.2020.1847297
  • Liu B, Bruni S. Application of the extended FASTSIM for non-Hertzian contacts towards the prediction of wear and rolling contact fatigue of wheel/rail systems. Proc Inst Mech Eng F J Rail Rapid Transit. 2023. doi:10.1177/09544097231178857
  • Liu B, Fu B, Bruni S. Generalisation of the linear theory of rolling contact to a single double-elliptic contact region and its application to solve non-Hertzian contact problems using extended FASTSIM. Veh Syst Dyn. 2022. doi:10.1080/00423114.2022.2113808
  • Lai J, Xu J, Chen Y, et al. Evaluation of dynamic derailment in a railway switch considering the longitudinal impacts caused by vehicle retarder. Proc Inst Mech Eng F J Rail Rapid Transit. 2023;237(6):806–817. doi:10.1177/09544097221138391
  • Lai J, Xu J, Liao T, et al. Investigation on train dynamic derailment in railway turnouts caused by track failure. Eng Fail Anal. 2022;134:106050. doi:10.1016/j.engfailanal.2022.106050
  • Lai J, Xu J, Wang P, et al. Numerical investigation of dynamic derailment behavior of railway vehicle when passing through a turnout. Eng Fail Anal. 2021;121:105132. doi:10.1016/j.engfailanal.2020.105132
  • Chen Y, Sun Y, Ding W, et al. Assessing the fast non-Hertzian methods for wheel-rail rolling contact integrated in the vehicle dynamics simulation. Proc Inst Mech Eng F J Rail Rapid Transit. 2023;237(3):371–384. doi:10.1177/09544097221113462
  • Meymand S Z, Keylin A, Ahmadian M. A survey of wheel-rail contact models for rail vehicles. Veh Syst Dyn. 2016;54(3):386–428. doi:10.1080/00423114.2015.1137956
  • Fang C, Jaafar SA, Zhou W, et al. Wheel-rail contact and friction models: a review of recent advances. Proc Inst Mech Eng F J Rail Rapid Transit. 2023. doi:10.1177/0954409723115673
  • Liu B, Vollebregt E, Bruni S. Review of conformal wheel/rail contact modelling approaches: towards the application in rail vehicle dynamics simulation. Veh Syst Dyn. 2023. doi:10.1080/00423114.2023.2228438
  • Marques F, Magalhães H, Liu B, et al. A new simplified approach to deal with conformal contact in railway dynamics. Proceedings of the 5th Joint International Conference on Multibody System Dynamics, Lisbon, 2018.
  • Vollebregt E. Detailed wheel/rail geometry processing with the conformal contact approach. Multibody Sys Dyn. 2021;52(2):135–167. doi:10.1007/s11044-020-09762-w
  • Zhao J, Vollebregt EAH, Oosterlee CW. Extending the BEM for elastic contact problems beyond the half-space approach. Math Model Anal. 2016;21(1):119–141. doi:10.3846/13926292.2016.1138418
  • Li Z. Wheel-rail rolling contact and its application to wear simulation [PhD dissertation]. Technische Universiteit Delft, 2002.
  • Blanco-Lorenzo J, Santamaria J, Vadillo E, et al. Finite element study of wheel-rail conformal rolling contact. In: M Rosenberger, M Plöchl, K Six, J Edelmann, editors. The dynamics of vehicles on roads and tracks. London: CRC Press; 2016. p. 1508–1514.
  • Vollebregt E, Segal G. Solving conformal wheel-rail rolling contact problems. Veh Syst Dyn. 2014;52(sup 1):455–468. doi:10.1080/00423114.2014.906634
  • Vollebregt E. Conformal contact: corrections and new results. Veh Syst Dyn. 2018;56(10):1622–1632. doi:10.1080/00423114.2018.1424917
  • Blanco-Lorenzo J, Santamaria J, Vadillo EG, et al. On the influence of conformity on wheel-rail rolling contact mechanics. Tribol Int. 2016;103:647–667. doi:10.1016/j.triboint.2016.07.017
  • Blanco-Lorenzo J, Santamaria J, Vadillo EG, et al. A contact mechanics study of 3D frictional conformal contact. Tribol Int. 2018;119:143–156. doi:10.1016/j.triboint.2017.10.022
  • Blanco-Lorenzo J, Vollebregt E, Santamaria J, et al. Approximating the influence coefficients of non-planar elastic solids for conformal contact analysis. Tribol Int. 2021;154. doi:10.1016/j.triboint.2020.106671
  • Vollebregt E. Release-notes for CONTACT version 19.1. Rotterdam: Vtech CMCC; 2019.
  • Boccini E, Marini L, Meli E, et al. Development of an innovative wheel-rail conformal contact model. Proceedings of the Third International Conference on Railway Technology: Research, Development and Maintenance, Stirlingshire, Scotland, 2016.
  • Butini E, Marini L, Meli E, et al. A new wear model considering wheel-rail conformal contact. Proceedings of the First International Conference on Rail Transportation. Reston, VA: American Society of Civil Engineers Reston, 2017.
  • Piotrowski J, Kik W. The influence of spin on creep forces for non-flat contact area. Veh Syst Dyn. 1999;31:158–176.
  • Piotrowski J, Kik W. A simplified model of wheel/rail contact mechanics for non-Hertzian problems and its application in rail vehicle dynamic simulations. Veh Syst Dyn. 2008;46(1–2):27–48. doi:10.1080/00423110701586444
  • Nencioni L, Meli E, Shi Z, et al. Development of an efficient conformal contact model for railway application. Proceedings of the Fifth International Conference on Railway Technology: Research, Development and Maintenance (RAILWAYS 2022), Montpellier, France, 2022.
  • Pascal J-P, Sany JR. Dynamics of an isolated railway wheelset with conformal wheel–rail interactions. Veh Syst Dyn. 2019;57(12):1947–1969. doi:10.1080/00423114.2018.1557704
  • Pascal J-P, Soua B. Solving conformal contacts using multi-Hertzian techniques. Veh Syst Dyn. 2016;54(6):784–813. doi:10.1080/00423114.2016.1161201
  • An B, Wang P. A wheel–rail normal contact model using the combination of virtual penetration method and strip-like Boussinesq’s integral. Veh Syst Dyn. 2023;61(6):1583–1601. doi:10.1080/00423114.2022.2085587
  • Sichani MS, Enblom R, Berg M. An alternative to FASTSIM for tangential solution of the wheel-rail contact. Veh Syst Dyn. 2016;54(6):748–764. doi:10.1080/00423114.2016.1156135
  • An B, Wang P. A novel local ellipse method for ellipse-based tangential contact model applied to wheel-rail contact. Int J Rail Transp. 2022. doi:10.1080/23248378.2022.2152888
  • Ayasse JB, Chollet H. Determination of the wheel rail contact patch in semi-Hertzian conditions. Veh Syst Dyn. 2005;43(3):161–172. doi:10.1080/00423110412331327193
  • Piotrowski J, Chollet H. Wheel-rail contact models for vehicle system dynamics including multi-point contact. Veh Syst Dyn. 2005;43(6–7):455–483. doi:10.1080/00423110500141144
  • Alonso A, Giménez J. Tangential problem solution for non-elliptical contact areas with the FastSim algorithm. Veh Syst Dyn. 2007;45(4):341–357. doi:10.1080/00423110600999763
  • Vollebregt E. Release-notes for CONTACT version 20.1. Rotterdam: Vtech CMCC; 2020.
  • Braghin F, Bruni S, Resta F. Wear of railway wheel profiles: a comparison between experimental results and a mathematical model. Veh Syst Dyn. 2002;37(sup1):478–489. doi:10.1080/00423114.2002.11666256
  • Vollebregt E. The bound-constrained conjugate gradient method for non-negative matrices. J Optim Theory Appl. 2014;162:931–953. doi:10.1007/s10957-013-0499-x
  • Zhao J, Vollebregt E, Oosterlee CW. A fast nonlinear conjugate gradient based method for 3D concentrated frictional contact problems. J Comput Phys. 2015;288:86–100. doi:10.1016/j.jcp.2015.02.016
  • Liu B, Bruni S, Vollebregt E. A non-Hertzian method for solving wheel-rail normal contact problem taking into account the effect of yaw. Veh Syst Dyn. 2016;54(9):1226–1246. doi:10.1080/00423114.2016.1196823

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.