Publication Cover
Vehicle System Dynamics
International Journal of Vehicle Mechanics and Mobility
Volume 62, 2024 - Issue 8
207
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Impact of wheel profile evolution on the lateral motion characteristics of a high-speed vehicle navigating through turnout

, , , , , & show all
Pages 2079-2097 | Received 25 May 2023, Accepted 18 Oct 2023, Published online: 27 Oct 2023

References

  • Chen Y, Wang J, Chen J, et al. A novel three-dimensional wheel–rail contact geometry method in the switch panel considering variable cross-sections and yaw angle. Veh Syst Dyn. 2022;60(9):3174–3197. doi:10.1080/00423114.2021.1941140
  • Ma X, Wang P, Xu J, et al. Comparison of non-Hertzian modeling approaches for wheel–rail rolling contact mechanics in the switch panel of a railway turnout. Proc Inst Mech Eng, Part F: J Rail Rapid Transit. 2019;233(4):466–476. doi:10.1177/0954409718799825
  • Kassa E, Nielsen JC. Stochastic analysis of dynamic interaction between train and railway turnout. Veh Syst Dyn. 2008;46(5):429–449. doi:10.1080/00423110701452829
  • Sebes M, Ayasse J, Chollet H, et al. Application of a semi-Hertzian method to the simulation of vehicles in high-speed switches. Veh Syst Dyn. 2006;44(sup1):341–348. doi:10.1080/00423110600871533
  • Wiest M, Daves W, Fischer FD, et al. Deformation and damage of a crossing nose due to wheel passages. Wear. 2008;265(9–10):1431–1438. doi:10.1016/j.wear.2008.01.033
  • Xiao J, Zhang F, Qian L. Numerical simulation of stress and deformation in a railway crossing. Eng Fail Anal. 2011;18(8):2296–2304. doi:10.1016/j.engfailanal.2011.08.006
  • Wiedorn J. Crossings–deformation, damage and optimization. Leoben: University of Leoben; 2020.
  • Wiedorn J, Daves W, Ossberger U, et al. Simplified explicit finite element model for the impact of a wheel on a crossing–validation and parameter study. Tribol Int. 2017;111:254–264. doi:10.1016/j.triboint.2017.03.023
  • Ma Y, Mashal AA, Markine VL. Modelling and experimental validation of dynamic impact in 1:9 railway crossing panel. Tribol Int. 2018;118:208–226. doi:10.1016/j.triboint.2017.09.036
  • Gao Y, Xu J, Liu Y, et al. An investigation into transient frictional rolling contact behaviour in a switch panel: validation and numerical simulation. Veh Syst Dyn. 2022;60(1):114–131. doi:10.1080/00423114.2020.1802492
  • Pålsson BA, Ambur R, Sebès M, et al. A comparison of track model formulations for simulation of dynamic vehicle–track interaction in switches and crossings. Veh Syst Dyn. 2023;61(3):698–724. doi:10.1080/00423114.2021.1983183
  • Chen R, Chen J, Wang P, et al. Impact of wheel profile evolution on wheel-rail dynamic interaction and surface initiated rolling contact fatigue in turnouts. Wear. 2019;438–439:203109, doi:10.1016/j.wear.2019.203109
  • Fröhling R. Analysis of asymmetric wheel profile wear and its consequences. Veh Syst Dyn. 2006;44(sup1):590–600. doi:10.1080/00423110600879296
  • Hao C, Chen J, Sun X, et al. Effects of flange wear on dynamic vehicle-turnout interaction. Proc Inst Mech Eng Part F: J Rail Rapid Transit. 2022; 09544097221127783.
  • Shu X, Wilson N, Davis DD, editors. Double rail model and turnout simulation. Rail transportation division conference; 2013; American Society of Mechanical Engineers.
  • Xu J, Ma Q, Zhao S, et al. Effect of wheel flat on dynamic wheel-rail impact in railway turnouts. Veh Syst Dyn. 2022;60(6):1829–1848. doi:10.1080/00423114.2021.1876888
  • Pålsson BA, Nielsen JC. Wheel–rail interaction and damage in switches and crossings. Veh Syst Dyn. 2012;50(1):43–58. doi:10.1080/00423114.2011.560673
  • Kassa E, Johansson G. Simulation of train–turnout interaction and plastic deformation of rail profiles. Veh Syst Dyn. 2006;44(sup1):349–359. doi:10.1080/00423110600871566
  • Yang Y, Ling L, Wang J, et al. A numerical study on tread wear and fatigue damage of railway wheels subjected to anti-slip control. Friction. 2023;11(8):1–23.
  • Fröhling R, Hettasch G. Wheel-rail interface management: a rolling stock perspective. Proc Inst Mech Eng Part F: J Rail Rapid Transit. 2010;224(5):491–497. doi:10.1243/09544097JRRT339
  • Kaiwen W. Calculation of wheel contact point trace and wheel/rail contact geometric parameters. J Southwest Jiaotong Univ. 1984;18(1):89–99.
  • Garg V. Dynamics of railway vehicle systems. London: Elsevier; 2012.
  • Zhai W, Liu P, Lin J, et al. Experimental investigation on vibration behaviour of a CRH train at speed of 350 km/h. Int J Rail Transp. 2015;3(1):1–16. doi:10.1080/23248378.2014.992819
  • Fang J, Chen R, Chen J, et al. A multi-objective optimisation method of rail combination profile in high-speed turnout switch panel. Veh Syst Dyn. 2023;61(1):336–355. doi:10.1080/00423114.2022.2052327
  • Xu J, Ma Q, Wang X, et al. Investigation on the motion conditions and dynamic interaction of vehicle and turnout due to differential wheelset misalignment. Veh Syst Dyn. 2022;60(8):2587–2607. doi:10.1080/00423114.2021.1912364
  • Craig RR Jr., Bampton MC. Coupling of substructures for dynamic analyses. AIAA J. 1968;6(7):1313–1319. doi:10.2514/3.4741
  • Sun X, Wang P, Chen J, et al. Analytical representations of inherent structural irregularities in turnout crossing with moveable point. Veh Syst Dyn. 2023;61(4):1086–1104. doi:10.1080/00423114.2022.2062010
  • Ayasse JB, Chollet H. Determination of the wheel rail contact patch in semi-Hertzian conditions. Veh Syst Dyn. 2005;43(3):161–172. doi:10.1080/00423110412331327193
  • Kalker JJ. Three-dimensional elastic bodies in rolling contact. Netherlands: Springer Science & Business Media; 2013.
  • An B, Wang P. A wheel–rail normal contact model using the combination of virtual penetration method and strip-like Boussinesq’s integral. Veh Syst Dyn. 2022;61(6):1–19.
  • Xu J, Wang P, Ma X, et al. Comparison of calculation methods for wheel–switch rail normal and tangential contact. Proc Inst Mech Eng Part F: J Rail Rapid Transit. 2017;231(2):148–161. doi:10.1177/0954409715624939
  • Askarinejad H, Dhanasekar M, Boyd P, et al. Field measurement of wheel-rail impact force at insulated rail joint. Exp Tech. 2015;39:61–69. doi:10.1111/j.1747-1567.2012.00867.x
  • Shi H, Luo R, Guo J. Improved lateral-dynamics-intended railway vehicle model involving nonlinear wheel/rail interaction and car body flexibility. Acta Mech Sin. 2021;37(6):997–1012. doi:10.1007/s10409-021-01059-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.