Publication Cover
Vehicle System Dynamics
International Journal of Vehicle Mechanics and Mobility
Latest Articles
190
Views
0
CrossRef citations to date
0
Altmetric
Research Article

An experimental methodology to support development of yaw damper prototypes based on a hardware-in-the-loop test bench

&
Received 03 Aug 2023, Accepted 15 Dec 2023, Published online: 26 Dec 2023

References

  • Cheli F, Corradi R. On rail vehicle vibrations induced by track unevenness: Analysis of the excitation mechanism. J Sound Vib. 2011;330(15):3744–3765. doi:10.1016/j.jsv.2011.02.025
  • S. Iwnicki, M. Spiryagin, C. Cole, and T. McSweeney, Eds., Handbook of railway vehicle dynamics, 2nd ed. CRC Press, 2019. doi:10.1201/9780429469398
  • Xia Z, Zhou J, Gong D, et al. Theoretical study on the effect of the anti-yaw damper for rail vehicles. Proc Inst Mech Eng Part C J Mech Eng Sci. 2020;234(2):457–473. doi:10.1177/0954406219878752
  • Alonso A, Giménez JG, Gomez E. Yaw damper modelling and its influence on railway dynamic stability. Veh Syst Dyn. 2011;49(9):1367–1387. doi:10.1080/00423114.2010.515031
  • Yan Y, Zeng J, Huang C, et al. Bifurcation analysis of railway bogie with yaw damper. Arch Appl Mech. 2019;89(7):1185–1199. doi:10.1007/s00419-018-1475-6
  • Alfi S, Bruni S, Goodall RM, et al. Secondary yaw control to improve curving vs. stability trade-off for a railway vehicle. Veh Syst Dyn. 2023;61(5):1367–1386. doi:10.1080/00423114.2022.2094277
  • Wang X, Liu B, Gialleonardo ED, et al. Application of semi-active yaw dampers for the improvement of the stability of high-speed rail vehicles: mathematical models and numerical simulation. Veh Syst Dyn. 2022;60(8):2608–2635. doi:10.1080/00423114.2021.1912366
  • Braghin F, Bruni S, Resta F. Active yaw damper for the improvement of railway vehicle stability and curving performances: simulations and experimental results. Veh Syst Dyn. 2006;44(11):857–869. doi:10.1080/00423110600733972
  • Ripamonti F, Chiarabaglio A. A smart solution for improving ride comfort in high-speed railway vehicles. J Vib Control. 2019;25(13):1958–1973. doi:10.1177/1077546319843377
  • Kwak MK, Lee J-H, Yang D-H, et al. Hardware-in-the-loop simulation experiment for semi-active vibration control of lateral vibrations of railway vehicle by magneto-rheological fluid damper. Veh Syst Dyn. 2014;52(7):891–908. doi:10.1080/00423114.2014.906631
  • Yang S, Zhao Y, Liu Y, et al. A new semi-active control strategy on lateral suspension systems of high-speed trains and its application in HIL test rig. Veh Syst Dyn. 2023;61(5):1317–1344. doi:10.1080/00423114.2022.2081221
  • Cheng J, Yan H, Zhang X, et al. HIL simulation of high-speed train active stability employing active inertial actuators. Veh Syst Dyn. 2022;0(0):1–19. doi:10.1080/00423114.2022.2139727
  • Gil J, Tur M, Correcher A, et al. Hardware-in-the-loop pantograph tests using analytical catenary models. Veh Syst Dyn. 2022;60(10):3504–3518. doi:10.1080/00423114.2021.1962538
  • Facchinetti A, Gasparetto L, Bruni S. Real-time catenary models for the hardware-in-the-loop simulation of the pantograph–catenary interaction. Veh Syst Dyn. 2013;51(4):499–516. doi:10.1080/00423114.2012.748920
  • Maki Y, Shimomura T, Sasaki K. Building a railway vehicle model for hardware-in-the-loop simulation. Q Rep RTRI. 2009;50(4):193–198. doi:10.2219/rtriqr.50.193
  • Watanabe N, Maki Y, Shimomura T, et al. Hardware-in-the-loop simulation system for duplication of actual running conditions of a multiple-car train consist. Q Rep RTRI. 2011;52(1):1–6. doi:10.2219/rtriqr.52.1
  • Isacchi G, Ripamonti F, Corsi M. A meta-heuristic optimization procedure for the identification of the nonlinear model parameters of hydraulic dampers based on experimental dataset of real working Conditions. J Comput Nonlinear Dyn. 2023;18(091004). doi:10.1115/1.4062541
  • Shen ZY, Hedrick JK, Elkins JA. A Comparison of Alternative Creep Force Models for Rail Vehicle Dynamic Analysis. Veh Syst Dyn. 1983;12(1–3):79–83. doi:10.1080/00423118308968725
  • Huang C, Zeng J. Dynamic behaviour of a high-speed train hydraulic yaw damper. Veh Syst Dyn. 2018;56(12):1922–1944. doi:10.1080/00423114.2018.1439588
  • Isacchi G, Ripamonti F, Corsi M. Innovative passive yaw damper to increase the stability and curve-taking performance of high-speed railway vehicles. Veh Syst Dyn. 2023;61(0):2273–2291. doi:10.1080/00423114.2022.2105242
  • Luo R, Liu C, Shi H. Dynamic simulation of a high-speed train with interconnected hydro-pneumatic secondary suspension. Proc Inst Mech Eng Part F J Rail Rapid Transit. 2022;236(5):570–581. doi:10.1177/09544097211031334
  • Teng W, Shi H, Luo R, et al. Improved nonlinear model of a yaw damper for simulating the dynamics of a high-speed train. Proc Inst Mech Eng Part F J Rail Rapid Transit. 2019;233(7):651–665. doi:10.1177/0954409718804414
  • Kalker JJ. A Fast Algorithm for the Simplified Theory of Rolling Contact. Veh Syst Dyn. 1982;11(1):1–13. doi:10.1080/00423118208968684
  • Bergander B, Kunnes W. Erri B176/DT 290: B176/3 benchmark problem, results and assessment: technical Report, European Rail Research Institute, Technical Report ERRI B176/DT 290; 1993.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.