Publication Cover
Vehicle System Dynamics
International Journal of Vehicle Mechanics and Mobility
Latest Articles
59
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Comparative study on the causes of rail corrugations in long steep-grade sections under traction and braking conditions

, , , , ORCID Icon, & show all
Received 06 Feb 2024, Accepted 28 May 2024, Published online: 02 Jul 2024

References

  • Zhang YF, Li J, Chen ZW, et al. Dynamic analysis of metro vehicle traveling on a high-pier viaduct under crosswind in Chongqing. Wind Struct. 2019;29(5):299–312.
  • Lu CX, Shi J. Dynamic response of vehicle and track in long downhill section of high-speed railway under braking condition. Adv Struct Eng. 2020;23(3):523–537. doi:10.1177/1369433219870573
  • Yu M, Wang WD, Liu JZ, et al. The transient response of high-speed wheel/rail rolling contact on “roaring rails” corrugation. Proc Inst Mech Eng Part F. 2019;233(10):1068–1080. doi:10.1177/0954409719825682
  • Liang HQ, Liu PF, Wang TL, et al. Influence of wheel polygonal wear on wheel-rail dynamic contact in a heavy-haul locomotive under traction conditions. Proc Inst Mech Eng Part F. 2020;235(4):405–415. doi:10.1177/0954409720931610
  • Yang YF, Guo XR, Sun Y, et al. Non-Hertzian contact analysis of heavy-haul locomotive wheel/rail dynamic interactions under changeable friction conditions. Veh Syst Dyn. 2021;60(6):2167–2189. doi:10.1080/00423114.2021.1902541
  • Corradi G, Sinou JJ, Besset S. Performances of the double modal synthesis for the prediction of the transient self-sustained vibration and squeal noise. Appl Acoust. 2021;175:107807. doi:10.1016/j.apacoust.2020.107807
  • Wang Q, Wang ZW, Mo JL, et al. Coupled dynamic behaviours of the brake system considering wheel-rail interactions. Int J Rail Transp. 2022;10(6):749–771. doi:10.1080/23248378.2021.2014996
  • Tao GQ, Wen ZF, Guan QH, et al. Locomotive wheel wear simulation in complex environment of wheel-rail interface. Wear. 2019;430:214–221.
  • Wu BW, Chen GX, Kang X, et al. Study on the Origin of rail corrugation at a long downhill braking section based on friction-excited oscillation. Tribol Trans. 2020;63(3):439–452. doi:10.1080/10402004.2019.1707336
  • Cui XL, He ZQ, Huang B, et al. Study on the effects of wheel-rail friction self-excited vibration and feedback vibration of corrugated irregularity on rail corrugation. Wear. 2021;477:203854. doi:10.1016/j.wear.2021.203854
  • Cui XL, Huang B, Du ZX, et al. Study on the mechanism of abnormal phenomenon of rail corrugation in the curve interval of mountain city metro. Tribol Trans. 2020;63(6):996–1007. doi:10.1080/10402004.2020.1782551
  • Wu BW, Chen GX, Lv JZ, et al. Generation mechanism and remedy method of rail corrugation at a sharp curved metro track with Vanguard fasteners. J Low Freq Noise Vibr Act Control. 2019;39(2):368–381.
  • Qian WJ, Wu YF, Chen GX, et al. Experimental and numerical studies of the effects of a rail vibration absorber on suppressing short pitch rail corrugation. J Vibroeng. 2016;18(2):1133–1144. doi:10.21595/jve.2015.16216
  • Chen GX, Zhou ZR, Ouyang HJ, et al. A finite element study on rail corrugation based on saturated creep force-induced self-excited vibration of a wheelset-track system. J Sound Vibr. 2010;329(22):4643–4655. doi:10.1016/j.jsv.2010.05.011
  • Zhao X, Wen ZF, Wang HY, et al. Modeling of high-speed wheel-rail rolling contact on a corrugated rail and corrugation development. J Zhejiang Univ Sci A. 2014;15(12):946–963. doi:10.1631/jzus.A1400191
  • Chen GX, Zhang S, Wu BW, et al. Field measurement and model prediction of rail corrugation. Proc Inst Mech Eng Part F. 2020;234(4):381–392. doi:10.1177/0954409719877318
  • Fourie D, Fröhling R, Heyns S. Railhead corrugation resulting from mode-coupling instability in the presence of veering modes. Tribol Int. 2020;152:106499. doi:10.1016/j.triboint.2020.106499
  • Chen GX, Lv JZ, Zhu Q, et al. Effect of the braking pressure variation on disc brake squeal of a railway vehicle: test measurement and finite element analysis. Wear. 2019: 426:1788–1796.
  • Mangoni D, Tasora A, Peng C. Complex eigenvalue analysis of multibody problems via sparsity-preserving Krylov-Schur iterations. Machines. 2023;11(2):218. doi:10.3390/machines11020218
  • Qin CJ, Tao JF, Shi HT, et al. A novel Chebyshev-wavelet-based approach for accurate and fast prediction of milling stability. Prec Eng. 2020;62:244–255. doi:10.1016/j.precisioneng.2019.11.016
  • Mickoski H, Mickoski I, Zdraveski F. Investigation of self-excited vibrations in tread brake unit for railway vehicles. J Vibroeng. 2016;18(6):3881–3890. doi:10.21595/jve.2016.16914
  • Wang ZQ, Lei ZY. Formation mechanism of metro rail corrugation based on wheel-rail stick-slip behaviors. Appl Sci. 2021;11(17):8128. doi:10.3390/app11178128
  • Zhao XN, Chen GX, Lv JZ, et al. Study on the mechanism for the wheel polygonal wear of high-speed trains in terms of the frictional self-excited vibration theory. Wear. 2019;426-427:1820–1827. doi:10.1016/j.wear.2019.01.020
  • Kang X, Chen GX, Song QF, et al. Effect of wheelset eccentricity on the out-of-round wheel of high-speed trains. Eng Fail Anal. 2022;131:105816. doi:10.1016/j.engfailanal.2021.105816
  • El Beshbichi O, Wan C, Bruni S, et al. Complex eigenvalue analysis and parameters analysis to investigate the formation of railhead corrugation in sharp curves. Wear. 2020;450:203150. doi:10.1016/j.wear.2019.203150
  • Dakel M, Sinou JJ. Stability and nonlinear self-excited friction-induced vibrations for a minimal model subjected to multiple coalescence patterns. J Vibroeng. 2017;19(1):604–628. doi:10.21595/jve.2016.17190
  • Zhu Q, Chen GX, Wu BW, et al. Effect of the material parameter and shape of brake pads on friction-induced disc brake squeal of a railway vehicle. Tribol Trans. 2021;64(4):744–752. doi:10.1080/10402004.2021.1914254
  • Mickoski H, Djidrov M, Mickoski I. Estimation and analysis of various influential factors in the braking process of rail vehicles. Veh Syst Dyn. 2021;59(1):1–16. doi:10.1080/00423114.2019.1656812
  • Petry M, Lamjahdy A, Jawad A, et al. Validation of a thermo- and a hydromechanical model of a brake system for high-speed rail applications. Proc Inst Mech Eng Part F. 2018;232(08):2149–2162. doi:10.1177/0954409718765348

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.