Publication Cover
Vehicle System Dynamics
International Journal of Vehicle Mechanics and Mobility
Latest Articles
83
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Dynamic modelling and analysis of a physics-driven strategy for vibration control of railway vehicles

, , &
Received 15 Jan 2024, Accepted 11 Jun 2024, Published online: 02 Jul 2024

References

  • Jiang P, Ling L, Ding X, et al. Flexible vibration of rail vehicle car-body induced by out-of-round wheels. Veh Syst Dyn. 2022;61:2825–2847.
  • Fu B, Liu B, Gialleonardo ED, et al. Semi-active control of primary suspensions to improve ride quality in a high-speed railway vehicle. Veh Syst Dyn. 2022;61:2664–2688.
  • Jin T, Liu Z, Sun S, et al. Theoretical and experimental investigation of a stiffness-controllable suspension for railway vehicles to avoid resonance. Int J Mech Sci. 2020;187:1–15.
  • Wang F, Liao M, Liao B, et al. The performance improvements of train suspension systems with mechanical networks employing inerters. Veh Syst Dyn. 2009;47(7):805–830. doi:10.1080/00423110802385951
  • Shi H, Zeng J, Qu S. Linear stability analysis of a high-speed rail vehicle concerning suspension parameters variation and active control. Veh Syst Dyn. 2023;61:2976–2998. doi:10.1080/00423114.2022.2147086
  • Shi H, Zeng J, Guo J. Disturbance observer-based sliding mode control of active vertical suspension for high-speed rail vehicles. Veh Syst Dyn. 2024;1–24. doi:10.1080/00423114.2024.2305296
  • Zhao Y, Liu Y, Yang S, et al. Analysis on new semi-active control strategies to reduce lateral vibrations of high-speed trains by simulation and hardware-in-the-loop testing. Proc Inst Mech Eng Part F J Rail Rapid Transit. 2022;236(8):960–972. doi:10.1177/09544097211059042
  • Smith MC. The inerter: a retrospective. In: Leonard NE, editor. Annual review of control, robotics, and autonomous systems. Palo Alto: Annual Reviews; 2020. p. 361–391.
  • Liu C, Chen L, Lee HP, et al. A review of the inerter and inerter-based vibration isolation: theory, devices, and applications. J Frankl Inst-Eng Appl Math. 2022;359(14):7677–7707. doi:10.1016/j.jfranklin.2022.07.030
  • Yang Y, Chen L, Liu C, et al. Two-parameter frequency tracker and its application of semi-active suspension with inerter. J Vib Eng Technol. 2023;12:3905–3917.
  • Lewis TD, Li Y, Tucker GJ, et al. Improving the track friendliness of a four-axle railway vehicle using an inertance-integrated lateral primary suspension. Veh Syst Dyn. 2021;59(1):115–134. doi:10.1080/00423114.2019.1664752
  • Pan Y, Liu F, Jiang R, et al. Modeling and onboard test of an electromagnetic energy harvester for railway cars. Appl Energy. 2019;250:568–581. doi:10.1016/j.apenergy.2019.04.182
  • Qiu C, Liu J, Jiang T, et al. Experimental study on a steel self-centering rocking column with SMA slip friction dampers. Eng Struct. 2023;274:1–17.
  • Smith MC. Synthesis of mechanical networks: the inerter. IEEE Trans Autom Control. 2002;47(10):1648–1662. doi:10.1109/TAC.2002.803532
  • Shen W, Hu Y, Zhu H, et al. Performance enhancement in cable vibration energy harvesting employing inerters: full-scale experiment. Struct Control Hlth. 2021;28(7):1–22. doi:10.1002/stc.2740
  • Li M, Li X, Gan C, et al. Human motion energy harvesting backpack using quasi-zero stiffness mechanism. Energy Convers Manag. 2023;288:1–10.
  • Liu C, Chen L, Lee HP, et al. Generalized skyhook-groundhook hybrid strategy and control on vehicle suspension. IEEE Trans Vehicul Technol. 2022;72:1689–1700.
  • Hu Y, Chen MZQ, Shu Z, et al. Analysis and optimisation for inerter-based isolators via fixed-point theory and algebraic solution. J Sound Vibr. 2015;346:17–36. doi:10.1016/j.jsv.2015.02.041
  • Wen H, Yang Y, Li Y, et al. Three-dimensional vibration analysis of curved pipes conveying fluid by straight pipe-curve fluid element. Appl Math Model. 2023;121:270–303. doi:10.1016/j.apm.2023.05.002
  • Karnopp D, Crosby MJ, Harwood RA. Vibration control using semi-active force generators. J Eng Ind. 1974;96(2):619–626. doi:10.1115/1.3438373
  • Gao Z, Tian B, Wu DP, et al. Study on semi-active control of running stability in the high-speed train under unsteady aerodynamic loads and track excitation. Veh Syst Dyn. 2021;59(1):101–114. doi:10.1080/00423114.2019.1662924
  • Yan Z, Li G, Luo J, et al. Vibration control of superconducting electro-dynamic suspension train with electromagnetic and sky-hook damping methods. Veh Syst Dyn. 2022;60(10):3375–3397. doi:10.1080/00423114.2021.1948080
  • Yao J, Cai C, Wang S, et al. Hybrid model predictive control on lifting and dropping vehicle body via asymmetric damping adjustment. Veh Syst Dyn. 2023;61:1–19.
  • Savaresi SM, Silani E, Bittanti S. Acceleration-driven-damper (ADD): an optimal control algorithm for comfort-oriented semiactive suspensions. J Dyn Syst Meas Control-Trans ASME. 2005;127(2):218–229. doi:10.1115/1.1898241
  • Jenis F, Kubík M, Michálek T, et al. Effect of the magnetorheological damper dynamic behaviour on the rail vehicle comfort: hardware-in-the-loop simulation. Actuators. 2023;12(2):47–13. doi:10.3390/act12020047
  • Morselli R, Zanasi R. Control of port Hamiltonian systems by dissipative devices and its application to improve the semi-active suspension behaviour. Mechatronics (Oxf). 2008;18(7):364–369. doi:10.1016/j.mechatronics.2008.05.008
  • Liu Y, Zuo L. Energy-flow-driven (EFD) semi-active suspension control. P Amer Contr Conf. 2014;2120–2125.
  • Lewis TD, Jiang JZ, Neild SA, et al. Using an inerter-based suspension to improve both passenger comfort and track wear in railway vehicles. Veh Syst Dyn. 2020;58(3):472–493. doi:10.1080/00423114.2019.1589535
  • Kakou P, Barry O. Simultaneous vibration reduction and energy harvesting of a nonlinear oscillator using a nonlinear electromagnetic vibration absorber-inerter. Mech Syst Signal Proc. 2021;156:107607–15. doi:10.1016/j.ymssp.2021.107607
  • Ge Z, Wang W, Li G, et al. Design, parameter optimisation, and performance analysis of active tuned inerter damper (TID) suspension for vehicle. J Sound Vibr. 2022;525:1–23.
  • Ding H, Chen L. Designs, analysis, and applications of nonlinear energy sinks. Nonlinear Dyn. 2020;100(4):3061–3107. doi:10.1007/s11071-020-05724-1
  • Wang R, Jing H, Yan F, et al. Optimization and finite-frequency H∞ control of active suspensions in in-wheel motor driven electric ground vehicles. J Frankl Inst-Eng Appl Math. 2015;352(2):468–484. doi:10.1016/j.jfranklin.2014.05.005
  • Nie S, Zhuang Y, Wang Y, et al. Velocity & displacement-dependent damper: a novel passive shock absorber inspired by the semi-active control. Mech Syst Signal Proc. 2018;99:730–746. doi:10.1016/j.ymssp.2017.07.008
  • Gupta A, Savarese S, Ganguli S, et al. Embodied intelligence via learning and evolution. Nat Commun. 2021;12(1):1–12. doi:10.1038/s41467-020-20314-w
  • Iida F, Giardina F. On the timescales of embodied intelligence for autonomous adaptive systems. Annu Rev Control Robot Auton Syst. 2023;6(1):95–122. doi:10.1146/annurev-control-063022-094301
  • Wang K, Chen MZQ, Liu F. Series-parallel mechanical circuit synthesis of a positive-real third-order admittance using at most six passive elements for inerter-based control. J Frankl Inst-Eng Appl Math. 2023;360:5442–5480. doi:10.1016/j.jfranklin.2023.03.027
  • Xia Z, Zhou J, Liang J, et al. Online detection and control of car body low-frequency swaying in railway vehicles. Veh Syst Dyn. 2021;59(1):70–100. doi:10.1080/00423114.2019.1664751
  • Li Z, Sun W, Gao H. Road-holding-oriented control and analysis of semi-active suspension systems. J Dyn Syst-Trans ASME. 2019;141(10):1–10.
  • Savaresi SM, Spelta C. Mixed sky-hook and ADD: approaching the filtering limits of a semi-active suspension. J Dyn Syst Meas Control-Trans ASME. 2007;129(4):382–392. doi:10.1115/1.2745846
  • Chen MZQ, Wang K, Chen G. Passive network synthesis: advances with inerter. Singapore: World Scientific; 2019.
  • Hu Y, Chen MZQ, Sun Y. Comfort-oriented vehicle suspension design with skyhook inerter configuration. J Sound Vibr. 2017;405:34–47. doi:10.1016/j.jsv.2017.05.036
  • Interaction between vehicles and track, power spectral density of track irregularities, Part 1: definitions, conventions and available data. Utrecht: Office for Research and Experiments of the International Union of Railways (ORE); 1971.
  • Preliminary studies and specifications – specification for a bogie with improved curving characteristics. Utrecht: Office for Research and Experiments of the International Union of Railways (ORE); 1989.
  • Wang Z, Wu B, Huang J, et al. Investigation of rail damage considering impact at a welded joint under wet condition. Ind Lubr Tribol. 2023;76:1–9.
  • Hamid A, Yang T-L. Analytics descriptions of track-geometry variations. Transport Res Rec. 1982;838:19–26.
  • Xu L, Zhai W. A spectral evolution model for track geometric degradation in train–track long-term dynamics. Veh Syst Dyn. 2020;58(1):1–27. doi:10.1080/00423114.2018.1564834
  • Ning D, Christie MD, Sun S, et al. A controllable mechanical motion rectifier-based semi-active magnetorheological inerter for vibration control. Smart Mater Struct. 2020;29(11):114005–13. doi:10.1088/1361-665X/abb643
  • BS EN 12299. Railway applications-ride comfort for passengers. Measurement and evaluation. 2009.
  • Schandl G, Lugner P, Benatzky C, et al. Comfort enhancement by an active vibration reduction system for a flexible railway car body. Veh Syst Dyn. 2007;45(9):835–847. doi:10.1080/00423110601145952

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.