Publication Cover
Vehicle System Dynamics
International Journal of Vehicle Mechanics and Mobility
Latest Articles
0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Gain-scheduled model predictive controller for vehicle-following trajectory generation for autonomous vehicles

, , &
Received 31 Oct 2022, Accepted 22 Jun 2024, Published online: 01 Aug 2024

References

  • Pedan B, Cap M, Yong S, et al. A survey of motion planning and control techniques for self-driving urban vehicles. IEEE Trans Intell Veh. 2016;1(1):33–55. doi:10.1109/TIV.2016.2578706
  • Wang H, Agarwal P. Approximation algorithms for curvature-constrained shortest paths. SIAM J Comput. 2001;30(6):1739–1772. doi:10.1137/S0097539796307790
  • Daniel K, Nash A, Koening S, et al. Theta*: any-angle path planning on grids. J Artif Intell Res. 2010;39:533–579. doi:10.1613/jair.2994
  • Jason L, Schmerling E, Clark A, et al. Fast marching tree: a fast marching sampling-based method for optimal motion planning in many dimensions. Int J Rob Res. 2015;34(7):883–921. doi:10.1177/0278364915577958
  • Liu J, Jayakumar P, Stein J, et al. A nonlinear model predictive control formulation for obstacle avoidance in high-speed autonomous ground vehicles in unstructured environments. Veh Syst Dyn. 2018;56(6):853–882. doi:10.1080/00423114.2017.1399209
  • Heilmeier A, Wischnewski A, Hermansdorfer L, et al. Minimum curvature trajectory planning and control for an autonomous race car. Veh Syst Dyn. 2020;58(10):1497–1527. doi:10.1080/00423114.2019.1631455
  • Hu C, Zhao L, Qu G. Event-triggered model predictive adaptive dynamic programming for road intersection path planning of unmanned ground vehicle. IEEE Trans Veh Technol. 2012;70(11):11228–11243. doi:10.1109/TVT.2021.3111692
  • SAE J3016_202104. Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles. Warrendale: Society of Automotive Engineers; 2021.
  • Xia L, Chung T, Kassim K. A review of automated emergency braking system and the trending for future vehicles. In: Southeast Asia Safer Mobility Symposium; SAEM 2013-010; 2013.
  • Coelingh E, Eidehall A, Bengtsson M. Collision warning with full auto brake and pedestrian detection - a practical example of automatic emergency braking. In: 13th International IEEE conference on intelligent transportation systems; 2010. p. 155–160. doi:10.1109/ITSC.2010.5625077
  • Kaempchen N, Schiele B, Dietmayer K. Situation assessment of an autonomous emergency brake for arbitrary vehicle-to-vehicle collision scenarios. IEEE Trans Intell Transp Syst. 2009;10(4):678–687. doi:10.1109/TITS.2009.2026452
  • Huang C, Salehi R, Ersal T, et al. An energy and emission conscious adaptive cruise controller for a connected automated diesel truck. Veh Syst Dyn. 2020;58(5):805–825. doi:10.1080/00423114.2020.1740283
  • Magdici S, Althoff M. Adaptive cruise control with safety guarantees for autonomous vehicles. IFAC Pap Online. 2017;50(1):5774–5781. doi:10.1016/j.ifacol.2017.08.418
  • Wan N, Zhang C, Vahidi A. Probabilistic anticipation and control in autonomous car following. IEEE Trans Control Syst Technol. 2019;27(1):30–38. doi:10.1109/TCST.2017.2762288
  • Thrun S, Montemerlo M, Dahlkamp H, et al. Stanley: the robot that won the DARPA grand challenge. J. Field Robotics. 2006;23:661–692. doi:10.1002/rob.20147
  • Buehler M, Iagnemma K, Singh S, editors. The 2005 DARPA grand challenge: the great robot race. Springer Tracts in Advanced Robotics (STAR) Series, vol 36. Heidelberg: Springer; 2007.
  • National Academy of Engineering. Frontiers of engineering: reports on leading-edge engineering from the 2014 symposium. Washington (DC): The National Academies Press; 2015.
  • Gordon T, Lidberg M. Automated driving and autonomous functions on road vehicles. Veh Syst Dyn. 2015;53(7):958–994. doi:10.1080/00423114.2015.1037774
  • “Google Self-Driving Car Project.” [cited 2022 Feb 2]. Available from: https://www.google.com/selfdrivingcar/
  • “Tesla Motors: Full Self-Driving Capability.” [cited 2022 Feb 2]. Available from: https://www.tesla.com/autopilot
  • d’Andréa-Novel B, Campion G, Bastin G. Control of nonholonomic wheeled mobile robots by state feedback linearization. Int J Rob Res. 1995;14(6):543–559. doi:10.1177/027836499501400602
  • Jiang ZP, Nijmeijer H. Tracking control of mobile robots: a case study in backstepping. Automatica (Oxf). 1997;33(7):1393–1399. doi:10.1016/S0005-1098(97)00055-1
  • Falcone P, Borrelli F, Tseng H, et al. Linear time-varying model predictive control and its application to active steering systems: stability analysis and experimental validation. Int J Robust Nonlinear Control. 2008;18(8):862–875. doi:10.1002/rnc.1245
  • Raffo G, Gomes G, Normey-Rico J, et al. A predictive controller for autonomous vehicle path tracking. IEEE Trans Intell Transp Syst. 2009;10(1):92–102. doi:10.1109/TITS.2008.2011697
  • Kim E, Kim J, Sunwoo M. Model predictive control strategy for smooth path tracking of autonomous vehicles with steering actuator dynamics. Int J Automot Technol. 2014;15(7):1155–1164. doi:10.1007/s12239-014-0120-9
  • Maitland A, Jin C, McPhee J. The restricted newton method for fast nonlinear model predictive control. Proc ASME Dyn Syst Control Conf. 2019;3; doi:10.1115/DSCC2019-9067
  • Cao H, Zhao S, Song X, et al. An optimal hierarchical framework of the trajectory following by convex optimisation for highly automated driving vehicles. Veh Syst Dyn. 2019;57(9):1287–1317. doi:10.1080/00423114.2018.1497185
  • Arrigoni S, Braghin F, Cheli F. MPC trajectory planner for autonomous driving solved by genetic algorithm technique. Veh Syst Dyn. 2021;60(12):4118–4143. doi:10.1080/00423114.2021.1999991
  • Chu S, Xie Z, Wong P, et al. Observer-based gain scheduling path following control for autonomous electric vehicles subject to time delay. Veh Syst Dyn. 2021;60(5):1602–1626. doi:10.1080/00423114.2020.1864419
  • Castro R, Brembeck J. Lyapunov-based fault tolerant control allocation. Veh Syst Dyn. 2021;60(10):3605–3630. doi:10.1080/00423114.2021.1971265
  • “ROboMObil – The Robotic Electric Vehicle.” [cited 2024 Jun 2]. Available from: https://www.dlr.de/en/sr/research-and-transfer/topics/robomobil
  • Elaneras R, Salinger J, Green C. Human factors issues associated with limited ability autonomous driving systems: drivers’ allocation of visual attention to the forward roadway. In: Proceedings of the 7th International driving symposium on human factors in driver assessment, training and vehicle design; Iowa City, IA; 2013. p. 92–98.
  • Ersal T, Kolmanovsky I, Masoud N, et al. Connected and automated road vehicles: state of the art and future challenges. Veh Syst Dyn. 2020;58(5):672–704. doi:10.1080/00423114.2020.1741652
  • Na G, Park G, Turri V, et al. Disturbance observer approach for fuel-efficient heavy-duty vehicle platooning. Veh Syst Dyn. 2020;58(5):748–767. doi:10.1080/00423114.2019.1704803
  • Groelke B, Earnhardt C, Borek J, et al. A predictive command governor-based adaptive cruise controller with collision avoidance for non-connected vehicle following. IEEE Trans Intell Transp Syst. 2021;23(8):12276–12286. doi:10.1109/TITS.2021.3112113
  • Sakhdari B, Azad N. Adaptive tube-based nonlinear MPC for ecological autonomous cruise control of plug-in hybrid electric vehicles. IEEE Trans Veh Technol. 2018;67(12):11390–11401. doi:10.1109/TVT.2018.2872654
  • Jeong Y. Self-adaptive motion prediction-based proactive motion planning for autonomous driving in urban environments. IEEE Access. 2021;9:105612–105626. doi:10.1109/ACCESS.2021.3100590
  • Fassbender D, Heinrich B, Luettel T, et al. An optimization approach to trajectory generation for autonomous vehicle following. IEEE/RSJ Int Conf Intell Rob Syst (IROS). 2017: 3675–3680. doi:10.1109/IROS.2017.8206213
  • Ilka A, Vesely V. Gain-scheduled MPC design for nonlinear systems with input constraints. IFAC. 2015;48(11):912–917. doi:10.1016/j.ifacol.2015.09.307
  • Fancher, P, Bareket, Z. Evaluating headway control using range versus range-rate relationships. Veh Syst Dyn, 1994;23(1):575–596. doi:10.1080/00423119408969076
  • Marzbanrad J, Karimian N. Space control law design in adaptive cruise control vehicles using model predictive control. Proc IMechE, Part D: Journal of Automobile Engineering. 2011;225(7):870–884. doi:10.1177/0954407011400819
  • Li S, Li K, Rajamani R, et al. Model predictive multi-objective vehicular adaptive cruise control. IEEE Trans Control Syst Technol. 2011;19(3):556–566. doi:10.1109/TCST.2010.2049203
  • Gahinet P, Apkarian P, Chilali M. Affine parameter-dependent Lyapunov functions and real parametric uncertainty. IEEE Trans Autom Control. 1996;41(3):436–442. doi:10.1109/9.486646
  • Grigorenko I, Garcia M. An evolutionary algorithm to calculate the ground state of a quantum system. Physica A. 2000;284(1-4):131–139. doi:10.1016/S0378-4371(00)00218-1
  • Gutowski M. Smooth genetic algorithm. J Phys Math General. 1994;27(23):7893–7904. doi:10.1088/0305-4470/27/23/032
  • Sahin M, Atav U, Tomak M. Application of genetic algorithm to quantum mechanics systems. Turk J Phys. 2006;30(4):253–275. doi:10.3906/fiz-0607-12
  • Waterloo Intelligent Systems Engineering - Automated Driving System (WISE-ADS) and UW Moose, Waterloo Intelligent Systems Engineering Lab. [cited Jun 2023]. Available from: https://uwaterloo.ca/waterloo-intelligent-systems-engineering-lab/projects/wise-automated-driving-system-and-uw-moose
  • Antkiewicz M, Kahn M, Ala M, et al. Modes of automated driving system scenario testing: Experience report and recommendation. SAE Int J Adv Curr Prac Mobility. 2020;2(4):2248–2266. doi:10.4271/2020-01-1204
  • Hosking B, McPhee J. Powertrain modeling and model predictive longitudinal dynamics control for hybrid electric vehicles. SAE Technical Paper 2018-01-0996. doi:10.4271/2018-01-0996
  • Van Gennip M, McPhee J. Parameter identification and validation for combined slip tire models using a Vehicle Measurement System. SAE Int J Veh Dyn, Stab, NVH. 2018;2(4):297–310. doi:10.4271/2018-01-1339
  • Queiroz R, Berger T, Czarnecki K. GeoScenario: an open DSL for autonomous driving scenario representation. IEEE Intell Veh Symp (IV). 2019: 287–294. doi:10.1109/IVS.2019.8814107
  • Hedrick J, McMahon D, Narendran V, et al. Longitudinal vehicle controller design for IVHS systems. Am Control Conf. 1991. doi:10.23919/ACC.1991.4791980
  • Rajamani R, Choi S, Law B, et al. Design and experimental implementation of longitudinal control for a platoon of automated vehicles. J Dyn Syst Meas Control. 2000;122(3):470–476. doi:10.1115/1.1286682
  • Swaroop D, Hedrick J, Chien C, et al. A comparison of spacing and headway control laws for automatically controlled vehicles. Veh Syst Dyn. 1994;23(1):597–625. doi:10.1080/00423119408969077

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.