Publication Cover
Vehicle System Dynamics
International Journal of Vehicle Mechanics and Mobility
Latest Articles
48
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Dynamic event-based cooperative control of virtually coupled high-speed trains: an ADP-based optimal control scheme

, , , ORCID Icon &
Received 21 Feb 2024, Accepted 26 Jun 2024, Published online: 09 Jul 2024

References

  • Wang Y, Liu W, Wang C, et al. A novel multi-objective optimization approach with flexible operation planning strategy for truck scheduling. Int J Network Dyn Intell. Jun 2023;2(2):art. no. 100002.
  • Quaglietta E, Wang M, Goverde RM. A multi-state train-following model for the analysis of virtual coupling railway operations. J Rail Transp Plann Manage. 2020;15:100195.
  • Zheng T, Zhou Y, Hu M, et al. Dynamic scheduling for large-scale flexible job shop based on noisy DDQN. Int J Network Dyn Intell. Dec 2023;2(4):art. no. 100015.
  • Wang TZ, Lu MJ, Zhu XY, et al. Aggressive maneuver oriented robust actuator fault estimation of a 3-DOF helicopter prototype considering measurement noises. IEEE ASME Trans Mechatron. 2022;27(3):1672–1682. doi: 10.1109/TMECH.2021.3087193
  • Zhao A, Sun J-Q. Control for stability improvement of high-speed train bogie with a balanced truncation reduced order model. Veh Syst Dyn. 2023;60(12):4343–4363. doi: 10.1080/00423114.2021.2025408
  • Mussone L, Calvo RW. An analytical approach to calculate the capacity of a railway system. Eur J Oper Res. 2013;228(1):11–23. doi: 10.1016/j.ejor.2012.12.027
  • Gao ZY, Tian B, Wu DP, et al. Study on semi-active control of running stability in the high-speed train under unsteady aerodynamic loads and track excitation. Veh Syst Dyn. 2021;59(1):101–114. doi: 10.1080/00423114.2019.1662924
  • Yang S, Zhao Y, Liu Y, et al. A new semi-active control strategy on lateral suspension systems of high-speed trains and its application in HIL test rig. Veh Syst Dyn. 2023;61(5):1317–1344. doi: 10.1080/00423114.2022.2081221
  • Wu Q, Ge X, Han Q-L, et al. Dynamics and control simulation of railway virtual coupling. Veh Syst Dyn. 2023;61(9):2292–2316. doi: 10.1080/00423114.2022.2105241
  • Lin X, Bai W, Wang Q, et al. Virtual coupling-based H∞ active fault-tolerant cooperative control for multiple high-speed trains with unknown parameters and actuator faults. IEEE J Emerging Sel Top Circuits Syst. 2023;13(3):780–788. doi: 10.1109/JETCAS.2023.3288874
  • Wu Q, Ge X, Han Q-L, et al. Railway virtual coupling: a survey of emerging control techniques. IEEE Trans Intell Veh. 2023;8(5):3239–3255. doi: 10.1109/TIV.2023.3260851
  • Bai W, Dong H, Zhang Z, et al. Coordinated time-varying low gain feedback control of high-speed trains under a delayed communication network. IEEE Trans Intell Transp Syst. 2021;23(5):4331–4341. doi: 10.1109/TITS.2020.3043577
  • Ge X, Wu Q, Han Q-L, et al. Resilient virtual coupling control of automatic train convoys with intermittent communications. IEEE Trans Veh Technol. 2024;73(5):6183–6195. doi: 10.1109/TVT.2023.3339854
  • Zhong X, He H. GrHDP solution for optimal consensus control of multiagent discrete-time systems. IEEE Trans Syst Man Cybern: Syst. 2018;50(7):2362–2374. doi: 10.1109/TSMC.6221021
  • Khedher MI, Jmila H, El-Yacoubi MA. On the formal evaluation of the robustness of neural networks and its pivotal relevance for AI-based safety-critical domains. Int J Network Dyn Intell. 2023;2(4):100018.
  • Li K, Li Y. Adaptive NN optimal consensus fault-tolerant control for stochastic nonlinear multiagent systems. IEEE Trans Neural Netw Learn Syst. 2021;34(2):947–957. doi: 10.1109/TNNLS.2021.3104839
  • Xue S, Luo B, Liu D, et al. Event-triggered ADP for tracking control of partially unknown constrained uncertain systems. IEEE Trans Cybern. 2021;52(9):9001–9012. doi: 10.1109/TCYB.2021.3054626
  • Dong A, Starr A, Zhao Y. Neural network-based parametric system identification: a review. Int J Syst Sci. 2023;54(13):2676–2688. doi: 10.1080/00207721.2023.2241957
  • Wei Q, Zhou T, Lu J, et al. Continuous-time stochastic policy iteration of adaptive dynamic programming. IEEE Trans Syst Man Cybern: Syst. 2023;53(10):6375–6387. doi: 10.1109/TSMC.2023.3284612
  • Thummalapeta M, Liu Y-C. Survey of containment control in multi-agent systems: concepts, communication, dynamics, and controller design. Int J Syst Sci. 2023;54(14):2809–2835. doi: 10.1080/00207721.2023.2250041
  • Su S, She J, Li K, et al. A nonlinear safety equilibrium spacing-based model predictive control for virtually coupled train set over gradient terrains. IEEE Trans Transp Electrif. 2021;8(2):2810–2824. doi: 10.1109/TTE.2021.3134669
  • Liu Y, Zhou Y, Su S, et al. An analytical optimal control approach for virtually coupled high-speed trains with local and string stability. Transp Res Part C: Emerging Technol. 2021;125:102886. doi: 10.1016/j.trc.2020.102886
  • Ge X, Han Q-L, Wu Q, et al. Resilient and safe platooning control of connected automated vehicles against intermittent denial-of-service attacks. IEEE/CAA J Autom Sin. 2023;10(5):1234–1251. doi: 10.1109/JAS.2022.105845
  • Wu Q, Ge X, Han Q-L, et al. A scalable parallel computing method for autonomous platoons. Veh Syst Dyn. 2023. doi: 10.1080/00423114.2023.2282099
  • Shang J, Yu H, Chen T. Worst-case stealthy attacks on stochastic event-based state estimation. IEEE Trans Automat Contr. 2021;67(4):2052–2059. doi: 10.1109/TAC.2021.3071948
  • Ma YS, Che WW, Deng C. Dynamic event-triggered model-free adaptive control for nonlinear CPSs under aperiodic DoS attacks. Inf Sci (NY). 2022;589:790–801. doi: 10.1016/j.ins.2022.01.009
  • Li X, Ye D. Dynamic event-triggered distributed filtering design for interval type-2 fuzzy systems over sensor networks under deception attacks. Int J Syst Sci. 2023;54(15):2875–2890. doi: 10.1080/00207721.2020.1871528
  • Xu W, Wang Z, Hu G, et al. Hybrid Nash equilibrium seeking under partial-decision information: an adaptive dynamic event-triggered approach. IEEE Trans Automat Contr. 2023;68(10):5862–5876. doi: 10.1109/TAC.2022.3226142
  • Cao L, Pan Y, Liang H, et al. Observer-based dynamic event-triggered control for multiagent systems with time-varying delay. IEEE Trans Cybern. 2022;53(5):3376–3387. doi: 10.1109/TCYB.2022.3226873
  • Sarangapani J, Lewis FL. Discrete-time neural net controller for a class of nonlinear dynamical systems. IEEE Trans Automat Contr. 1996;41(11):1693–1699. doi: 10.1109/9.544013
  • Dong H, Zhao X, Luo B. Optimal tracking control for uncertain nonlinear systems with prescribed performance via critic-only ADP. IEEE Trans Syst Man Cybern: Syst. 2022;52(1):561–573. doi: 10.1109/TSMC.2020.3003797
  • Zhao S, Wang J, Xu H, et al. Composite observer-based optimal attitude-tracking control with reinforcement learning for hypersonic vehicles. IEEE Trans Cybern. 2022;53(2):913–926. doi: 10.1109/TCYB.2022.3192871
  • Ge X, Han Q-L, Zhang X-M, et al. Dynamic event-triggered control and estimation: a survey. Int J Autom Comput. 2021;18(6):857–886. doi: 10.1007/s11633-021-1306-z
  • Xie M, Ding D, Shen B, et al. Learning-based platooning control of automated vehicles under constrained bit rate. IEEE Trans Intell Veh. Jan 2024;9(1):1104–1117. doi: 10.1109/TIV.2023.3335866

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.