Publication Cover
Vehicle System Dynamics
International Journal of Vehicle Mechanics and Mobility
Latest Articles
0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Modelling and experimental validation of an adaptive interconnected suspension with adjustable roll stiffness (AIS-ARS)

, , , , , , & show all
Received 09 Aug 2023, Accepted 27 Jul 2024, Published online: 09 Aug 2024

Reference

  • Winkler C. Rollover of heavy commercial vehicles. The UMTRI Res Rev. 2000;31(4):1–17.
  • Ervin RD. The influence of size and weight variables on the roll stability of heavy duty trucks. 1983. doi:10.4271/831163
  • El–Gindy M. An overview of performance measures for heavy commercial vehicles in North America. Int J Veh Des. 1995 Jan 1;16(4–5):441–463.
  • Vu VT, Sename O, Dugard L, et al. Enhancing roll stability of heavy vehicle by LQR active anti-roll bar control using electronic servo-valve hydraulic actuators. Veh Syst Dyn. 2017;55(9):1405–1429. doi:10.1080/00423114.2017.1317822
  • Wang G, Liu Y, Li S, et al. New integrated vehicle stability control of active front steering and electronic stability control considering tire force reserve capability. TVT. 2021;70(3):2181–2195.
  • Zhai L, Sun T, Wang J. Electronic stability control based on motor driving and braking torque distribution for a four in-wheel motor drive electric vehicle. TVT. 2016;65(6):4726–4739.
  • Chandrasekharan S, Guenther DA, Heydinger GJ, et al. Development of a roll stability control model for a tractor trailer vehicle. SAE Tech Pap Ser. 2009;2:670–679.
  • Chen YC, Zheng HY. Research on TTR and roll stability control of heavy vehicle. Appl Mech Mater Des. 2013;380–384:601–604. doi:10.4028/www.scientific.net/AMM.380-384.601
  • Chen Y, Ahmadian M, Peterson A. Pneumatically balanced heavy truck air suspensions for improved roll stability. 2015. doi:10.4271/2015-01-2749
  • Yang L, Zhang JW, Chen SZ. Research on hydro-pneumatic balanced suspension of multi-spindled vehicle. Appl Mech Mater. 2011;66–68:855–861. doi:10.4028/www.scientific.net/AMM.66-68.855
  • Pazooki A, Cao D, Rakheja S, et al. Ride dynamic evaluations and design optimisation of a torsio-elastic off-road vehicle suspension. Veh Syst Dyn. 2011;49(9):1455–1476. doi:10.1080/00423114.2010.516833
  • Cao D, Song X, Ahmadian M. Editors’ perspectives: road vehicle suspension design, dynamics, and control. Veh Syst Dyn. 2011;49(1–2):3–28. doi:10.1080/00423114.2010.532223
  • Ding F, Han X, Mo X, et al. Design of hydraulically interconnected suspension systems for tri-axle straight trucks with rear tandem axle bogie suspensions. SAE Int. 2013. doi:10.4271/2013-01-1237
  • Liu Q, Zhang N, Feng F, et al. Handling performance of tractor-semitrailers equipped with hydraulically interconnected suspension. P I Mech Eng D-J Aut. 2019;233(12):3098–3111. doi:10.1177/0954407018817629
  • Qi H, Zhang B, Zhang N, et al. Enhanced lateral and roll stability study for a two-axle bus via hydraulically interconnected suspension tuning. SAE Int J Veh Dyn, Stab, and NVH. 2018 Nov 19;3(1):5–18. Available from: https://www.sae.org/publications/technical-papers/content/10-03-01-0001/
  • Fenske J. The McLaren 720S suspension is a complex masterpiece. Available from: https://drivetribe.com/p/the-mclaren-720s-suspension-is-KIv3Q3zjS2SnSHx2hJUu2Q
  • Nie J, Zhao Y, Zhang X, et al. Design and test of lateral interconnected hydro-pneumatic ISD suspension. P I Mech Eng D-J Aut. 2022. doi:10.1177/09544070221140982
  • Smith WA. An investigation into the dynamics of vehicles with hydraulically interconnected suspensions. Sydney: University of Technology. 2009. Available from: https://opus.lib.uts.edu.au/handle/10453/36058
  • Tan B, Wang S, Zhang B, et al. Sensitivity stratification concept and hierarchical multi-objective optimisation for an ambulance with hydraulically interconnected suspension and stretcher-human body model. Vehicle Syst Dyn. 2022;60(2):540–568.
  • Fukuda T, Zhang X, Hasegawa Y, et al. Preview posture control and impact load control of rough terrain vehicle with interconnected suspension. Piscataway (NJ): IEEE; 2004. p. 761. doi:10.1109/IROS.2004.1389444
  • Zhang J, Chen X, Zhang B, et al. Design and dynamic analysis of bounce and pitch plane hydraulically interconnected suspension for mining vehicle to improve ride comfort and pitching stiffness. 2015. doi:10.4271/2015-01-0617
  • Félez J, Vera C. Bond graph assisted models for hydro-pneumatic suspensions in crane vehicles. Veh Syst Dyn. 1987;16(5–6):313–332. doi:10.1080/00423118708968889
  • Luo R, Liu C. Dynamics simulation of the high-speed train using interconnected hydro-pneumatic suspension as a self-steering system. Veh Syst Dyn. 2022;60(6):2055–2074.
  • Smith WA, Smith WA, Zhang N, et al. Recent developments in passive interconnected vehicle suspension. Front Mech Eng China. 2010;5(1):1–18. doi:10.1007/s11465-009-0092-z
  • Heyring CB, Longman MJ. Inventors; Kinetic Pty Ltd, assignee. Passive ride control for a vehicle suspension system. USA patent US7384054.
  • Smith WA. An investigation into the dynamics of vehicles with hydraulically interconnected suspensions. Sydney: University of Technology; 2009.
  • Qi H, Chen Y, Zhang N, et al. Improvement of both handling stability and ride comfort of a vehicle via coupled hydraulically interconnected suspension and electronic controlled air spring. P I Mech Eng D-J Aut. 2020;234(2–3):552–571. doi:10.1177/0954407019856538
  • Li H, Li S, Sun W. Vibration and handling stability analysis of articulated vehicle with hydraulically interconnected suspension. J Vib Control. 2019;25(13):1899–1913. doi:10.1177/1077546319844092
  • Smith WA, Zhang N. Hydraulically interconnected vehicle suspension: optimization and sensitivity analysis. P I Mech Eng D-J Aut. 2010;224(11):1335–1355. doi:10.1243/09544070JAUTO1422
  • Wang M, Zhang B, Chen Y, et al. Frequency-based modeling of a vehicle fitted with roll-plane hydraulically interconnected suspension for ride comfort and experimental validation. IEEE Access. 2020;8:1091–1104. doi:10.1109/ACCESS.2019.2935260
  • Zhang B, Tian K, Hu W, et al. Investigation of the influence of an hydraulically interconnected suspension (HIS) on steady-state cornering. 2017. doi:10.4271/2017-01-0430
  • Hong H, Wang L, Zheng M, et al. Handling analysis of a vehicle fitted with roll-plane hydraulically interconnected suspension using motion-mode energy method. SAE Int. 2014. doi:10.4271/2014-01-0110
  • Wang L, Jian S, Qi H, et al. Lateral stability study of a vehicle fitted with hydraulically interconnected suspension in slalom maneuver. IEEE. 2017:1702–1707. doi:10.1109/CAC.2017.8243042
  • Qi H, Zheng M, Zhang B, et al. Lateral dynamics and suspension tuning for a two-axle bus fitted with roll-resistant hydraulically interconnected suspension. 2018. doi:10.4271/2018-01-0831
  • Smith WA, Zhang N, Jeyakumaran J. Hydraulically interconnected vehicle suspension: theoretical and experimental ride analysis. Veh Syst Dyn. 2010;48(1):41–64. doi:10.1080/00423110903243190
  • Zhu S, Xu G, Tkachev A, et al. Comparison of the road-holding abilities of a roll-plane hydraulically interconnected suspension system and an anti-roll bar system. P I Mech Eng D-J Aut. 2017;231(11):1540–1557. doi:10.1177/0954407016675995
  • Wang L, Xu G, Zhang N, et al. Experimental comparison of anti-roll bar with hydraulically interconnected suspension in articulation mode. SAE Tech Pap. 2013:2.
  • Hua H, Wang L, Qi H, et al. Implementation and experimental study of a novel air spring combined with hydraulically interconnected suspension to enhance roll stiffness on buses. 2015. doi:10.4271/2015-01-0652
  • Li H, Li S, Sun W, et al. The optimum matching control and dynamic analysis for air suspension of multi-axle vehicles with anti-roll hydraulically interconnected system. Mech Syst Signal Pr. 2020;139:106605. doi:10.1016/j.ymssp.2019.106605
  • Ding F, Han X, Luo Z, et al. Modelling and characteristic analysis of tri-axle trucks with hydraulically interconnected suspensions. Veh Syst Dyn. 2012;50(12):1877–1904. doi:10.1080/00423114.2012.699074
  • Su H. An investigation of vibration isolation systems using active, semi-active and tunable passive mechanisms, with applications to vehicle suspensions. Montreal: Concordia University. 1990.
  • Liu P. An analytical study of ride and handling performance of an interconnected vehicle suspension. Montreal: Concordia University. 1994.
  • Cao D, Rakheja S, Su C. Roll- and pitch-plane coupled hydro-pneumatic suspension: part 1: feasibility analysis and suspension properties. Veh Syst Dyn. 2010;48(3):361–386. doi:10.1080/00423110902883251
  • Li Z, Wang Y, Du H, et al. Modelling and analysis of full-vehicle hydro-pneumatic suspension system considering real-gas polytropic process. Mech Syst Signal Process. 2022;165:108406. doi:10.1016/j.ymssp.2021.108406
  • Kwon K, Seo M, Kim H, et al. Multi-objective optimisation of hydro-pneumatic suspension with gas-oil emulsion for heavy-duty vehicles. Veh Syst Dyn. 2020;58(7):1146–1165. doi:10.1080/00423114.2019.1609050
  • Lu Y. Adaptive and interconnected suspension systems for improving truck stability and ride quality. UWSpace. 2023. http://hdl.handle.net/10012/19662
  • Doumiati M, Victorino A, Charara A, et al. Lateral load transfer and normal forces estimation for vehicle safety: experimental test. Veh Syst Dyn. 2009;47(12):1511–1533. doi:10.1080/00423110802673091

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.