762
Views
29
CrossRef citations to date
0
Altmetric
Review

Guanidinoacetic acid as a feed supplement for poultry

, ORCID Icon &

References

  • Abudabos, A. M., F. Saleh, A. Lemme, and H. A. H. Zakaria. 2014. “The Relationship between Guanidino Acetic Acid and Metabolisable Energy Level of Diets on Performance of Broiler Chickens.” Italian Journal of Animal Science 13: 548–556. doi:10.4081/ijas.2014.3269.
  • Ahmadipour, B., F. Khajali, and M. Sharifi. 2018c. “Effect of Guanidinoacetic Acid Supplementation on Growth Performance and Gut Morphology in Broiler Chickens.” Poultry Science Journal 6: 1924.
  • Ahmadipour, B., M. Sharifi, and F. Khajali. 2018b. “Pulmonary Hypertensive Response of Broiler Chickens to Arginine and Guanidinoacetic Acid under High-altitude Hypoxia.” Acta Veterinaria Hungrica 66: 114124.
  • Ahmadipour, B., S. Naeini, M. Sharifi, and F. Khajali. 2018a. “Growth Performance and Right Ventricular Hypertrophy Responses of Broiler Chickens to Guanidinoacetic Acid Supplementation under Hypobaric Hypoxia.” Journal of Poultry Science 55: 6064. doi:10.2141/jpsa.0170044.
  • Ale Saheb Fosoul, S. S., A. Azarfar, A. Gheisari, and H. Khosravinia. 2018. “Energy Utilisation of Broiler Chickens in Response to Guanidinoacetic Acid Supplementation in Diets with Various Energy Contents.” British Journal of Nutrition 120: 131–140. doi:10.1017/S0007114517003701.
  • Almquist, H. J., E. Mecchi, and F. H. Kratzer. 1941. “Creatine Formation in the Chick.” Journal of Biological Chemistry 141: 365–373.
  • Almquist, H. J., F. H. Kratzer, and E. Mecchi. 1943. “Further Experiments on Creatine Formation in the Chick.” Journal of Biological Chemistry 143: 17–20.
  • Amiri, M., H. A. Ghasemi, I. Hajikhodadadi, and A. H. K. Farahani. 2019. “Efficacy of Guanidinoacetic Acid at Different Dietary Crude Protein Levels on Growth Performance, Stress Indicators, Antioxidant Status, and Intestinal Morphology in Broiler Chickens Subjected to Cyclic Heat Stress.” Animal Feed Science and Technology 254: 114208. Article#114208. doi:10.1016/j.anifeedsci.2019.114208.
  • Angel, R. 2007. “Metabolic Disorders: Limitations to Growth of and Mineral Deposition into the Broiler Skeleton after Hatch and Potential Implications for Leg Problems.” Journal of Applied Poultry Research 16: 138149. doi:10.1093/japr/16.1.138.
  • Aviagen. 2019. “Ross 308 Broiler Performance Objectives”.
  • Basoo, H., F. Khajali, E. Asadi Khoshoie, M. Faraji, and R. F. Wideman. 2012. “Re-evaluation of Arginine Requirements for Broilers Exposed to Hypobaric Condition during the 3-to 6-week Period.” Journal of Poultry Science 49: 303–307. doi:10.2141/jpsa.0110133.
  • Behrooj, N., F. Khajali, and H. Hassanpour. 2012. “Feeding Reduced-protein Diets to Broilers Subjected to Hypobaric Hypoxia Is Associated with the Development of Pulmonary Hypertension Syndrome.” British Poultry Science 53: 658–664. doi:10.1080/00071668.2012.727082.
  • Bessman, S. P., and C. L. Carpenter. 1985. “The Creatine-creatine Phosphate Energy Shuttle.” Annual Review of Biochemistry 54: 831862. doi:10.1146/annurev.bi.54.070185.004151.
  • Brake, J., and D. Balnave.1995. “Essentiality of Arginine in Broilers during Hot Weather.” In Proceedings of 12th Annual Biokyowa Amino Acid Council Meeting, St Louis, Mo, October 3–5.
  • Brake, J., D. Balnave, and J. J. Dibner. 1998. “Optimum Dietary Arginine: Lysine Ratio for Broiler Chickens Is Altered during Heat Stress in Association with Changes in Intestinal Uptake and Sodium Chloride.” British Poultry Science 39: 639–647. doi:10.1080/00071669888511.
  • Carneiro, T. C. 2011. “Influência da idade na interação espe-rmatozóide-ovo e na morfologia dos órgãos genitais em reprodutoras de codornas japonesas.” Tese de Mestrado, Universidade Estadual de Maringá, UEM, Maringá, Paraná, 63.
  • Ceylan, N., and I. Ciftcy. 2014. “Effects of L-Valine Supplementation to Low-crude Protein Diets with Two Different Leucine Levels and Effects of a CreAMINO Supplementation in Broiler Chicks from Day 11 to 24.” Evonik research report.
  • Chamruspollert, M., G. M. Pesti, and R. I. Bakalli. 2002a. “The Influence of Labile Dietary Methyl Donors on the Arginine Requirement of Young Broiler Chicks.” Poultry Science 81: 11421148. doi:10.1093/ps/81.8.1142.
  • Chamruspollert, M., G. M. Pesti, and R. I. Bakalli. 2002b. “Dietary Interrelationships among Arginine, Methionine, and Lysine in Young Broiler Chicks.” British Journal of Nutrition 88: 655–660. doi:10.1079/BJN2002732.
  • Cordova-Noboa, H. A., E. O. Oviedo-Rondon, A. H. Sarsour, J. Barnes, D. Sapcota, D. Lopez, L. Gross, M. Rademacher-Heilshorn, and U. Braun. 2018b. “Effect of Guanidinoacetic Acid Supplementation on Live Performance, Meat Quality, Pectoral Myopathies and Blood Parameters of Male Broilers Fed Corn-based Diets with or without Poultry By-products.” Poultry Science 97: 2494–2505. doi:10.3382/ps/pey097.
  • Cordova-Noboa, H. A., E. O. Oviedo-Rondon, A. H. Sarsour, J. Barnes, P. Ferzola, M. Rademacher-Heilshorn, and U. Braun. 2018a. “Performance, Meat Quality, and Pectoral Myopathies of Broilers Fed either Corn or Sorghum Based Diets Supplemented with Guanidinoacetic Acid.” Poultry Science 97: 2479–2493. doi:10.3382/ps/pey096.
  • Daly, M. M. 1985. “Guanidinoacetate Methyltransferase Activity in Tissues and Cultured Cells.” Archive of Biochemistry and Biophysics 236: 576–584. doi:10.1016/0003-9861(85)90661-7.
  • De Groote, A. A., N. Braun, and R. N. Dilger. 2018. “Efficacy of Guanidinoacetic Acid on Growth and Muscle Energy Metabolism in Broiler Chicks Receiving Arginine-deficient Diets.” Poultry Science 97: 890–900. doi:10.3382/ps/pex378.
  • Deldicque, L., M. Louis, D. Theisen, H. Nielens, H. Dehoux, J. P. Thissen, M. J. Rennie, and M. Francaux. 2005. “Increased IGF mRNA in Human Skeletal Muscle after Creatine Supplementation.” Medicine and Science in Sport and Exercise 37: 731–736. doi:10.1249/01.MSS.0000162690.39830.27.
  • Dilger, R. N., K. Bryant-Angeloni, R. L. Payne, A. Lemme, and C. M. Parsons. 2013. “Dietary Guanidinoacetic Acid Is an Efficacious Replacement for Arginine for Young Chicks.” Poultry Science 92: 171177. doi:10.3382/ps.2012-02425.
  • EFSA (European Food Safety Authority). 2009. “Safety and Efficiency of Guanidino Acetic Acid as Feed Additive for Chickens for Fattening.” The EFSA Journal 988: 1–30.
  • Esser, A. F. G., D. R. M. Goncaleves, A. Rorig, A. B. Cristo, R. Perini, and J. L. M. Fernandes. 2017. “Effects of Guanidionoacetic Acid and Arginine Supplementation to Vegetable Diets Fed to Broiler Chickens Subjected to Heat Stress before Slaughter.” Brazilian Journal of Poultry Science 19: 429–436. doi:10.1590/1806-9061-2016-0392.
  • Esser, A. F. G., T. L. Taniguti, A. L. da Silva, E. Vanroo, I. N. Kaneko, T. C. Dos Santos, and J. L. M. Fernandes. 2018. “Effects of Guanidionoacetic Acid and Arginine Supplementation to Vegetable Diets Fed to Broiler Chickens on Performance, Carcass Yield and Meat Quality.” Semina-Ciencias Agrarias 39: 1307–1318. doi:10.5433/1679-0359.2018v39n3p1307.
  • Harris, R. C. 2000. “Effects and Safety of Dietary and Supplementary Creatine.” In Creatine. From Basic Science to Clinical Application, edited by R. Paoletti, A. Poli, and A. S. Jackson, 3339, The Netherlands: Springer.
  • Heger, J., J. Zelenka, V. Machander, C. Cruz, M. Lestak, and D. Hampel. 2014. “Effects of Guanidinoacetic Acid Supplementation to Broiler Diets with Varying Energy Content.” Acta Universitatis Agriculturae Silviculturae Mendelianae Brunensis 62: 477–485. doi:10.11118/actaun201462030477.
  • Hess, V., J. Ringel, A. Lemme, and L. F. Araujo. 2008. “Effects of Guanidino Acetic Acid Supplementation in Brazilian Type Broiler Diets at Summer Conditions.” In Proceedings 1st Mediterranian Summit of WPSA – Advances and Challenges in Poultry Science, Chalkidiki, Greece, 388–391.
  • Izadinia, M., M. Nobakht, F. Khajali, M. Faraji, F. Zamani, D. Qujeq, and I. Karimii. 2010. “Pulmonary Hypertension and Ascites as Affected by Dietary Protein Source in Broiler Chickens Reared in Cool Temperature at High Altitudes.” Animal Feed Science and Technology 155: 194–200. doi:10.1016/j.anifeedsci.2009.12.009.
  • Kallweit, E., R. Fries, G. Kielwein, and S. Scholtyssek. 1988. Qualität Tierischer Nahrungsmittel. Stuttgart, Germany: Ulmer.
  • Keshavarz, K., and H. L. Fuller. 1971. “Relationship of Arginine and Methionine to Creatine Formation in Chicks.” Journal of Nutrition 101: 855–862. doi:10.1093/jn/101.7.855.
  • Khajali, F., H. Basoo, and M. Faraji. 2013. “Estimation of Arginine Requirements for Male Broilers Grown at High Altitude from One to Twenty-one Days of Age.” Journal of Agricultural Science and Technology 15: 911917.
  • Khajali, F., and R. F. Wideman. 2010. “Dietary Arginine: Metabolic, Environmental, Immunological, and Physiological Interrelationships.” World’s Poultry Science Journal 66: 751766. doi:10.1017/S0043933910000711.
  • Khajali, F., and R. F. Wideman. 2016. “Nutritional Approaches to Ameliorate Pulmonary Hypertension in Broiler Chickens.” Journal of Animal Physiology and Animal Nutrition 100: 314. doi:10.1111/jpn.2016.100.issue-1.
  • Khakran, G., M. R. Chamani, F. Foroudi, A. A. Sadeghi, and M. A. Afshar. 2018. “Effect of Guanidine Acetic Acid Addition to Corn-soybean Meal Based Diets on Productive Performance, Blood Biochemical Parameters and Reproductive Hormones of Laying Hens.” Kafkas Universitesi Veteriner Fakultesi Dergisi 24: 99–105.
  • Kodambashi Emami, N., A. Golian, D. D. Rhoads, and M. D. Mesgaran. 2017. “Interactive Effects of Temperature and Dietary Supplementation of Arginine or Guanidinoacetic Acid on Nutritional and Physiological Responses in Male Broiler Chickens.” British Poultry Science 58: 87–94. doi:10.1080/00071668.2016.1257779.
  • Komoto, J., Y. Takata, T. Yamada, K. Konishi, H. Ogawa, T. Gomi, M. Fuioka, and F. Takusagawa. 2003. “Monoclinic Guanidinoacetate Methyltransferase and Gadolinium Ion-binding Characteristics.” Acta Crystallographia D 59: 1589–1596. doi:10.1107/S0907444903014719.
  • Krueger, K., K. Damme, and A. Lemme. 2010. “Bessere Mast Mit CreAmino.” DGS Magazin 26/2010, 10–14.
  • Lee, H. J., W. S. Fillers, and M. R. Ivegar. 1988. “Phosphocreatine an Intracellular High-energy Compound, Is Found in the Extracellular fluid of the Seminal Vesicles in Mice and Rats.” Proceeding of National Academy of Science of the United States of America 85: 7265–7269. doi:10.1073/pnas.85.19.7265.
  • Lemme, A., C. Elwert, R. Gobbi, and M. Rademacher. 2011. “Application of the Guanidino Acetic Acid as Creatine Source in Broilers Fed Diets with or without Fish Meal.” In Proceedings of 18th European Symposium on Poultry Nutrition, Çeşme, Turkey, 453–455. doi:10.1177/1753193411434038.
  • Lemme, A., J. Ringel, A. Sterk, and J. F. Young. 2007a. “Supplemental Guanidine Acetic Acid Affects Energy Metabolism of Broilers.” In Proceedings of 16th European Symposium on Poultry Nutrition, Strasbourg, France, 339–342.
  • Lemme, A., J. Ringel, H. S. Rostagno, and M. S. Redshaw. 2007b. “Supplemental Guanidine Acetic Acid Improved Feed Conversion, Weight Gain and Breast Meat Yield in Male and Female Broilers.” In Proceedings of 16th European Symposium on Poultry Nutrition, Strasbourg, France, 335–338.
  • Lemme, A., M. Rademacher-Heilshorn, R. N. Dilger, C. Scharch, and U. Braun. 2018b. “Arginine Sparing Potential of Guanidinoacetic Acid in Broiler Nutrition.” Poultry Science 97 (E–supplement 2): 101.
  • Lemme, A., R. Degroot, R. Dilger, and U. Braun. 2018a. “Digestibility of Guanidinoacetic Acid Is 100% in Broilers while Availability Depends on Dosage and Dietary Arginine Supply.” Poultry Science 97 (E–supplement 1): 102.
  • Lemme, A., R. Gobbi, A. Helmbrecht, J. D. Van Der Klis, J. Firman, J. Jankowski, and K. Kozlowski. 2010b. “Use of Guanidino Acetic Acid in All-vegetable Diets for Turkeys.” In Turkeytimes – Proceedings of the 4th Turkey Science and Production Conference, Macclesfield, UK, 57–61.
  • Lemme, A., R. Gobbi, and E. Esteve-Garcia. 2010a. “Effectiveness of Creatine Sources on Performance of Broilers at Deficient or Adequate Methionine Supply.” In Proceedings of 13th European Poultry Conference, Tours, France, 5.
  • Louis, M., R. V. Beneden, H. Dehoux, M. J. Thissen, and M. Francaux. 2004. “Creatine Increases IGF and Myogenic Regulatory Factor mRNA in C2C12 Cells.” FEBS Letters 557: 243–247. doi:10.1016/S0014-5793(03)01504-7.
  • Majdeddin, M., A. Golian, H. Kermanshahi, S. de Smet, and J. Michiels. 2018. “Guanidinoacetic Acid Supplementation in Broiler Chickens Fed on Corn-soybean Diets Affects Performance in the Finisher Period and Energy Metabolites in Breast Muscle Independent of Diet Nutrient Density.” British Poultry Science 59: 443–451. doi:10.1080/00071668.2018.1476678.
  • Majdeddin, M., A. Golian, H. Kermanshahi, S. De Smet, and J. Michiels. Guanidinoacetic Acid Supplementation in Broiler Chickens Fed on Corn-soybean Diets Affects Performance in the Finisher Period and Energy Metabolites in Breast Muscle Independent of Diet Nutrient Density. British Poultry Science. 2018;59:443-451. DOI: doi:10.1080/00071668.2018.1476678.
  • Malins, H., V. Pirgozliev, N. Muley, and A. Lemme. 2017. “Addition of Guanidinoacetic Acid Can Counterbalance Energy Reduction in Broiler Diets.” In Proceedings of 21st European Symposium on Poultry Nutrition, Salou/Vila-seca, Spain, 4.
  • Michiels, J., L. Maertens, J. Buyse, A. Lemme, M. Rademacher, N. A. Dierick, and S. de Smet. 2012. “Supplementation of Guanidinoacetic Acid to Broiler Diets: Effects on Performance, Carcass Characteristics, Meat Quality, and Energy Metabolism.” Poultry Science 91: 402–412. doi:10.3382/ps.2011-01585.
  • Mousavi, S. N., A. Afsar, and H. Lotfollahian. 2013. “Effects of Guanidinoacetic Acid Supplementation to Broiler Diets with Varying Energy Contents.” Journal of Applied Poultry Research 22: 47–54. doi:10.3382/japr.2012-00575.
  • Murakami, A. E., R. J. Rodrigueiro, T. C. Santos, I. C. Ospina-Rojas, and M. Rademacher. 2014. “Effects of Dietary Supplementation of Meat-type Quail Breeders with Guanidinoacetic Acid on Their Reproductive Parameters and Progeny Performance.” Poultry Science 93: 2237–2244. doi:10.3382/ps.2014-03894.
  • Nasiroleslami, M., M. Torki, A. A. Saki, and A. R. Abdolmohammadi. 2018. “Effects of Dietary Guanidinoacetic Acid and Betaine Supplementation on Performance, Blood Biochemical Parameters and Antioxidant Status of Broilers Subjected to Cold Stress.” Journal of Applied Animal Research 46: 1016–1022. doi:10.1080/09712119.2018.1450751.
  • O’Connor, R. S., C. M. Steeds, R. W. Wiseman, and G. R. Pavlath. 2008. “Phosphocreatine as an Energy Source for Actin Cytoskeletal Rearrangements during Myoblast Fusion.” Journal of Physiology 586: 28412853. doi:10.1113/jphysiol.2008.160390.
  • Ostojic, S. 2015. “Cellular Bioenergetics of Guanidinoacetic Acid: The Role of Mitochondria.” Journal of Bioenergetics and Biomembranes 47: 369–372. doi:10.1007/s10863-015-9619-7.
  • Ringel, J., A. Lemme, A. Knox, J. Mc Nab, and M. S. Redshaw. 2007. “Effects of Graded Levels of Creatine and Guanidine Acetic Acid in Vegetable Based Diets on Performance and Biochemical Parameters in Muscle Tissue.” In Proceedings of 16th European Symposium on Poultry Nutrition, Strasbourg, France, 387–390. doi:10.1016/j.ejpb.2007.03.018.
  • Ringel, J., A. Lemme, M. S. Redshaw, and K. Damme. 2008. “The Effects of Supplemental Guanidinoacetic Acid as a Precursor of Creatine in Vegetable Broiler Diets on Performance and Carcass Parameters.” Poultry Science 87(Suppl. 1): 72. ( Abstr.).
  • Sharideh, H., L. E. Neia, M. Zaghari, M. Zhandi, A. Akhlaghi, and A. Lotfi. 2016. “Effect of Feeding Guanidinoacetic Acid and L-arginine on the Fertility Rate and Sperm Penetration in the Perivitelline Layer of Aged Broiler Breeder Hens.” Journal of Animal Physiology and Animal Nutrition 100 (2): 316–322. doi:10.1111/jpn.12372.
  • Siegert, W., H. Ahmadi, A. Helmbrecht, and M. Rodehutscord. 2015a. “A Quantitative Study of the Interactive Effects of Glycine and Serine with Threonine and Choline on Growth Performance in Broilers.” Poultry Science 94: 1557–1568. doi:10.3382/ps/pev109.
  • Siegert, W., H. Ahmadi, and M. Rodehutscord. 2015b. “Meta-analysis of the Influence of Dietary Glycine and Serine, with Consideration of Methionine and Cysteine, on Growth and Feed Conversion of Broilers.” Poultry Science 94: 1853–1863. doi:10.3382/ps/pev129.
  • Slominski, B. A. 2011. “Recent Advances in Research on Enzymes for Poultry Diets.” Poultry Science 90: 2013–2023. doi:10.3382/ps.2011-01372.
  • Stead, L., . M., K. P. Au, R. L. Jacobs, M. L. Bronson, and E. T. Brosnan. 2001. “Methylation Demand and Homocysteine Metabolism: Effects of Dietary Provision of Creatine and Guanidinoacetate.” American Journal of Physiology Endocrinology and Metabolism 281: 1095–1100. doi:10.1152/ajpendo.2001.281.5.E1095.
  • Tabatabaei Yazdi, F., A. Golian, H. Zarghi, and M. Varidi. 2017. “Effect of Wheat-soy Diet Nutrient Density and Guanidine Acetic Acid Supplementation on Performance and Energy Metabolism in Broiler Chickens.” Italian Journal of Animal Science 16: 593–600. doi:10.1080/1828051X.2017.1305260.
  • Tapeh, R. S., M. Zhandi, M. Zaghari, and A. Akhlaghi. 2017. “Effects of Guanidinoacetic Acid Diet Supplementation on Semen Quality and Fertility of Broiler Breeder Roosters.” Theriogenology 89: 178–182. doi:10.1016/j.theriogenology.2016.11.012.
  • Tossenberger, J., M. Rademacher, K. Nemeth, V. Halas, and A. Lemme. 2016. “Digestibility and Metabolism of Dietary Guanidino Acetic Acid Fed to Broilers.” Poultry Science 95: 2058–2067. doi:10.3382/ps/pew083.
  • Vranes, M., S. Ostojic, A. Tot, S. Papovic, and S. Gadzuric. 2017. “Experimental and Computational Study of Guanidinoacetic Acid Self-aggregation in Aqueous Solution.” Food Chemistry 237: 53–57. doi:10.1016/j.foodchem.2017.05.088.
  • Walker, J. B. 1979. “Creatine: Biosynthesis, Regulation, and Function.” Advances in Enzymology 1: 177–242.
  • Wallimann, T. 2007. “Chapter 1Introduction – Creatine: Cheap Ergogenic Supplement with Great Potential for Health and Disease.” In Creatine and Creatine Kinase in Health and Disease, edited by G. S. Salomons and M. Wyss, 1–16. The Netherlands: Springer.
  • Wang, Y., J. Ma, W. Qiu, J. Zhang, S. Feng, X. Zhou, X. Wang, et al. 2018. “Guanidinoacetic Acid Regulates Myogenic Differentiation and Muscle Growth through miR-133a-3p and miR-1a-3p Co-mediated Akt/mTOR/S6K Signaling Pathway.” International Journal of Molecular Sciences 19: E2837. doi:10.3390/ijms19092837.
  • Wyss, M., and R. Kaddurah-Daouk. 2000. “Creatine and Creatinine Metabolism.” Physiological Review 80: 1107–1213.
  • Zhao, M. M., T. Gao, L. Zhang, L. Li, A. Lv, L. Yu, F. Gao, and G. H. Zhou. 2017. “In Ovo Feeding of Creatine Pyruvate Alters Energy Reserves, Satellite Cell Mitotic Activity and Myogenic Gene Expression of Breast Muscle in Embryos and Neonatal Broilers.” Poultry Science 96: 33143323. doi:10.3382/ps/pex150.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.