1,016
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Dealing with minor differences in bone matrix: can spectra follow the DNA preservation?

ORCID Icon, ORCID Icon & ORCID Icon
Pages 203-222 | Received 01 Apr 2021, Accepted 14 Jun 2021, Published online: 01 Jul 2021

References

  • Herrmann B, Hummel S. Ancient DNA : recovery and analysis of genetic material from paleontological, archaeological, museum, medical, and forensic specimens. New York (NY): Springer New York; 1994.
  • Leskovar T, Zupanič Pajnič I, Geršak ŽM, Jerman I, Črešnar M. ATR-FTIR spectroscopy combined with data manipulation as a pre-screening method to assess DNA preservation in skeletal remains. Forensic Sci Int Genet. 2020;44:102196.
  • Kontopoulos I, Penkman K, Mullin VE, Winkelbach L, Unterländer M, Scheu A, Kreutzer S, Hansen HB, Margaryan A, Teasdale MD, et al. Screening archaeological bone for palaeogenetic and palaeoproteomic studies. PLoS One. 2020;15(6):e0235146. doi:10.1371/journal.pone.0235146.
  • Sosa C, Vispe E, Núñez C, Baeta M, Casalod Y, Bolea M, Hedges REM, Martinez-Jarreta B. Association between ancient bone preservation and dna yield: a multidisciplinary approach. Am J Phys Anthropol. 2013;151(1):102–109. doi:10.1002/ajpa.22262.
  • Kontopoulos I, Penkman K, McAllister GD, Lynnerup N, Damgaard PB, Hansen HB, Allentoft ME, Collins MJ. Petrous bone diagenesis: a multi-analytical approach. Palaeogeogr Palaeoclimatol Palaeoecol. 2019;518:143–154. doi:10.1016/j.palaeo.2019.01.005.
  • Schwarz C, Debruyne R, Kuch M, McNally E, Schwarcz H, Aubrey AD, Bada J, Poinar H. New insights from old bones: DNA preservation and degradation in permafrost preserved mammoth remains. Nucleic Acids Res. 2009;37(10):3215–3229. doi:10.1093/nar/gkp159.
  • Larkin P. Chapter 1 - introduction: infrared and raman spectroscopy. In: Larkin P, editor. Infrared and raman spectroscopy: principles and spectral interpretation. Oxford: Elsevier; 2011. p. 1–5.
  • Figueiredo MM, Gamelas JAF, Martins AG. Characterization of bone and bone-based graft materials using FTIR spectroscopy. In: Theophile T, editor. Infrared spectroscopy - life and biomedical sciences. Rijeka (Croatia): InTech; 2012. p. 315–338.
  • Taylor EA, Donnelly E. Raman and fourier transform infrared imaging for characterization of bone material properties. Bone. 2020;139:115490. doi:10.1016/j.bone.2020.115490.
  • Sponheimer M, Ryder CM, Fewlass H, Smith EK, Pestle WJ, Talamo S. Saving old bones: a non-destructive method for bone collagen prescreening. Sci Rep. 2019;9(1):13928. doi:10.1038/s41598-019-50443-2.
  • Martínez Cortizas A, López-Costas O. Linking structural and compositional changes in archaeological human bone collagen: an FTIR-ATR approach. Sci Rep. 2020;10(1):17888. doi:10.1038/s41598-020-74993-y.
  • Pedrosa M, Curate F, Batista de Carvalho LAE, Marques MPM, Ferreira MT. Beyond metrics and morphology: the potential of FTIR-ATR and chemometrics to estimate age-at-death in human bone. Int J Legal Med. 2020;134(5):1905–1914. doi:10.1007/s00414-020-02310-3.
  • Pal Chowdhury M, Choudhury KD, Bouchard GP, Riel-Salvatore J, Negrino F, Benazzi S, Slimak L, Frasier B, Szabo V, Harrison R, et al. Machine learning ATR-FTIR spectroscopy data for the screening of collagen for ZooMS analysis and MtDNA in archaeological bone. J Archaeol Sci. 2021;126:105311. doi:10.1016/j.jas.2020.105311.
  • Lindahl T. Instability and decay of the primary structure of DNA. Nature. 1993;362(6422):709–715. doi:10.1038/362709a0.
  • Allentoft ME, Matthew C, David H, James H, Oskam CL, Hale ML, Campos PF, Samaniego JA, Gilbert TM, Eske W, et al. The half-life of DNA in bone: measuring decay kinetics in 158 dated fossils. Proc R Soc B Biol Sci. 2012;279(1748):4724–4733. doi:10.1098/rspb.2012.1745.
  • Götherström A, Collins MJ, Angerbjörn A, Lidén K. Bone preservation and DNA amplification. Archaeometry. 2002;44(3):395–404. doi:10.1111/1475-4754.00072.
  • Grunenwald A, Keyser C, Sautereau AM, Crubézy E, Ludes B, Drouet C. Adsorption of DNA on biomimetic apatites: toward the understanding of the role of bone and tooth mineral on the preservation of ancient DNA. Appl Surf Sci. 2014;292:867–875. doi:10.1016/j.apsusc.2013.12.063.
  • Kaya M, Toyama Y, Kubota K, Nodasaka Y, Ochiai M, Nomizu M, Nishi N. Effect of DNA structure on the formation of collagen–DNA complex. Int J Biol Macromol. 2005;35(1):39–46. doi:10.1016/j.ijbiomac.2004.11.005.
  • Kitamura H, Iwamoto C, Sakairi N, Tokura S, Nishi N. Marked effect of DNA on collagen fibrillogenesis in vitro. Int J Biol Macromol. 1997;20(3):241–244. doi:10.1016/S0141-8130(97)00021-4.
  • Patonai Z, Maasz G, Avar P, Schmidt J, Lorand T, Bajnoczky I, Mark L. Novel dating method to distinguish between forensic and archeological human skeletal remains by bone mineralization indexes. Int J Legal Med. 2013;127(2):529–533. doi:10.1007/s00414-012-0785-4.
  • Leskovar T, Zupanič Pajnič I, Jerman I, Črešnar M. Separating forensic, WWII, and archaeological human skeletal remains using ATR-FTIR spectra. Int J Legal Med. 2019;134:811–821. doi:10.1007/s00414-019-02079-0.
  • Woess C, Unterberger SH, Roider C, Ritsch-Marte M, Pemberger N, Cemper-Kiesslich J, Hatzer-Grubwieser P, Parson W, Pallua JD, Shahid M. Assessing various infrared (IR) microscopic imaging techniques for post-mortem interval evaluation of human skeletal remains. PLoS One. 2017;12(3):e0174552. doi:10.1371/journal.pone.0174552.
  • Amadasi A, Cappella A, Cattaneo C, Cofrancesco P, Cucca L, Merli D, Milanese C, Pinto A, Profumo A, Scarpulla V, et al. Determination of the Post mortem interval in skeletal remains by the comparative use of different physico-chemical methods: are they reliable as an alternative to 14C? HOMO- J Comp Hum Biol. 2017;68(3):213–221. doi:10.1016/j.jchb.2017.03.006.
  • Longato S, Wöss C, Hatzer-Grubwieser P, Bauer C, Parson W, Unterberger SH, Kuhn V, Pemberger N, Pallua AK, Recheis W, et al. Post-mortem interval estimation of human skeletal remains by micro-computed tomography, mid-infrared microscopic imaging and energy dispersive X-ray mapping. Anal Methods. 2015;7(7):2917–2927. doi:10.1039/C4AY02943G.
  • Tătar A, Ponta O, Kelemen BS, Tatar A-S, Oana P, Kelemen BS, Tătar A, Ponta O, Kelemen BS. Bone diagenesis and FTIR indices: a correlation. Stud Univ Babes-Bolyai Biol. 2014;LIX(1):101–114.
  • Howes JM, Stuart BH, Thomas PS, Raja S, O’Brien C. An investigation of model forensic bone in soil environments studied using infrared spectroscopy. J Forensic Sci. 2012;57(5):1161–1167. doi:10.1111/j.1556-4029.2012.02236.x.
  • Reznikov N, Shahar R, Weiner S. Bone hierarchical structure in three dimensions. Acta Biomater. 2014;10(9):3815–3826. doi:10.1016/j.actbio.2014.05.024.
  • Hedges REM, Clement JG, Thomas CDL, O’Connell TC. Collagen turnover in the adult femoral mid-shaft: modeled from anthropogenic radiocarbon tracer measurements. Am J Phys Anthropol. 2007;133(2):808–816. doi:10.1002/ajpa.20598.
  • Mulhern DM. Rib remodeling dynamics in a skeletal population from Kulubnarti, Nubia. Am J Phys Anthropol. 2000;111(4):519–530. doi:10.1002/(SICI)1096-8644(200004)111:4<519::AID-AJPA7>3.0.CO;2-7.
  • Fahy GE, Deter C, Pitfield R, Miszkiewicz JJ, Mahoney P. Bone deep: variation in stable isotope ratios and histomorphometric measurements of bone remodelling within adult humans. J Archaeol Sci. 2017;87:10–16. doi:10.1016/j.jas.2017.09.009.
  • Colson IB, Bailey JF, Vercauteren M, Sykes BC, Hedges REM. The preservation of ancient DNA and bone diagenesis. Anc Biomol. 1997;1(2):109–117.
  • Procopio N, Chamberlain AT, Buckley M. Intra- and interskeletal proteome variations in fresh and buried bones. J Proteome Res. 2017;16(5):2016–2029. doi:10.1021/acs.jproteome.6b01070.
  • Kontopoulos I, Penkman K, Liritzis I, Collins MJ. Bone diagenesis in a mycenaean secondary burial (Kastrouli, Greece). Archaeol Anthropol Sci. 2019;11(10):5213–5230. doi:10.1007/s12520-019-00853-0.
  • Jans MME, Kars H, Nielsen–Marsh CM, Smith CI, Nord AG, Arthur P, Earl N. In situ preservation of archaeological bone: a histological study within a multidisciplinary approach. Archaeometry. 2002;44(3):343–352. doi:10.1111/1475-4754.t01-1-00067.
  • Gonçalves D, Vassalo AR, Mamede AP, Makhoul C, Piga G, Cunha E, Marques MPM, Batista de Carvalho LAE. Crystal clear: vibrational spectroscopy reveals intrabone, intraskeleton, and interskeleton variation in human bones. Am J Phys Anthropol. 2018;166(2):296–312. doi:10.1002/ajpa.23430.
  • Emmons AL, Davoren J, DeBruyn JM, Mundorff AZ. Inter and intra-individual variation in skeletal DNA preservation in buried remains. Forensic Sci Int Genet. 2020;44:102193. doi:10.1016/j.fsigen.2019.102193.
  • Hines DZC, Vennemeyer M, Amory S, Huel RLM, Hanson I, Katzmarzyk C, Parsons TJ. Chapter 13 - prioritized sampling of bone and teeth for DNA Analysis in commingled cases. In: Adams BJ, Byrd JE, editors. Commingled human remains: methods in recovery, analysis, and identification. San Diego: Academic Press; 2014. p. 275–305.
  • Mundorff AZ, Bartelink EJ, Mar-Cash E. DNA preservation in skeletal elements from the world trade center disaster: recommendations for mass fatality management*,†. J Forensic Sci. 2009;54(4):739–745. doi:10.1111/j.1556-4029.2009.01045.x.
  • Mundorff A, Davoren JM. Examination of DNA Yield rates for different skeletal elements at increasing post mortem intervals. Forensic Sci Int Genet. 2014;8(1):55–63. doi:10.1016/j.fsigen.2013.08.001.
  • Zupanc T, Zupanič Pajnič I, Podovšovnik E, Obal M. High DNA yield from metatarsal and metacarpal bones from slovenian second world war skeletal remains. Forensic Sci Int Genet. 2020;51:102426. doi:10.1016/j.fsigen.2020.102426.
  • Hollund HI, Teasdale MD, Mattiangeli V, Sverrisdóttir OÓ, Bradley DG, O’Connor T. Pick the right pocket. Sub-sampling of bone sections to investigate diagenesis and DNA preservation. Int J Osteoarchaeol. 2017;27(3):365–374. doi:10.1002/oa.2544.
  • Leskovar T, Zupanič Pajnič I, Geršak ŽM, Jerman I, Črešnar M. ATR-FTIR spectroscopy combined with data manipulation as a pre-screening method to assess DNA preservation in skeletal remains. Forensic Sci Int Genet. 2020;44:102196.
  • Zupanič Pajnič I. Extraction of DNA from human skeletal material BT - forensic DNA typing protocols. In: Goodwin W, editor. Forensic DNA typing protocols. New York: Springer New York; 2016. p. 89–108.
  • Marjanović D, Hadžić Metjahić N, Čakar J, Džehverović M, Dogan S, Ferić E, Džijan S, Škaro V, Projić P, Madžar T, et al. Identification of human remains from the second world war mass graves uncovered in Bosnia and Herzegovina. Croat Med J. 2015;56(3):257–262. doi:10.3325/cmj.2015.56.257.
  • Weiner S, Bar-Yosef O. States of preservation of bones from prehistoric sites in the near east: a survey. J Archaeol Sci. 1990;17(2):187–196. doi:10.1016/0305-4403(90)90058-D.
  • Olsen J, Heinemeier J, Bennike P, Krause C, Margrethe Hornstrup K, Thrane H. Characterisation and blind testing of radiocarbon dating of cremated bone. J Archaeol Sci. 2008;35(3):791–800. doi:10.1016/j.jas.2007.06.011.
  • Thompson TJU, Gauthier M, Islam M. The application of a new method of fourier transform infrared spectroscopy to the analysis of burned bone. J Archaeol Sci. 2009;36(3):910–914. doi:10.1016/j.jas.2008.11.013.
  • Bonfield W, Gibson IR. Novel synthesis and characterization of an AB-type carbonate-substituted hydroxyapatite. J Biomed Mater Res. 2002;59(4):697–708. doi:10.1002/jbm.10044.
  • Rey C, Shimizu M, Collins B, Glimcher MJ. Resolution-enhanced fourier transform infrared spectroscopy study of the environment of phosphate ion in the early deposits of a solid phase of calcium phosphate in bone and enamel and their evolution with age: 2. Investigations in the Nu3PO4 domain. Calcif Tissue Int. 1991;49(6):383–388. doi:10.1007/BF02555847.
  • Madupalli H, Pavan B, Tecklenburg MMJ. Carbonate substitution in the mineral component of bone: discriminating the structural changes, simultaneously imposed by carbonate in A and B sites of apatite. J Solid State Chem. 2017;255:27–35. doi:10.1016/j.jssc.2017.07.025.
  • Lebon M, Reiche I, Gallet X, Bellot-Gurlet L, Zazzo A. Rapid quantification of bone collagen content by ATR-FTIR spectroscopy. Radiocarbon. 2016;58(1):131–145. doi:10.1017/RDC.2015.11.
  • Trueman CNG, Behrensmeyer AK, Tuross N, Weiner S. Mineralogical and compositional changes in bones exposed on soil surfaces in Amboseli National Park, Kenya: diagenetic Mechanisms and the role of sediment pore fluids. J Archaeol Sci. 2004;31(6):721–739. doi:10.1016/j.jas.2003.11.003.
  • Thompson TJU, Islam M, Bonniere M. A new statistical approach for determining the crystallinity of heat-altered bone mineral from FTIR spectra. J Archaeol Sci. 2013;40(1):416–422. doi:10.1016/j.jas.2012.07.008.
  • Habermehl J, Skopinska J, Boccafoschi F, Sionkowska A, Kaczmarek H, Laroche G, Mantovani D. Preparation of ready-to-use, stockable and reconstituted collagen. Macromol Biosci. 2005;5(9):821–828. doi:10.1002/mabi.200500102.
  • Demšar J, Curk T, Erjavec A, Gorup Č, Hočevar T, Milutinovič M, Možina M, Polajnar M, Toplak M, Starič A. Orange: data mining toolbox in python. J Mach Learn Res. 2013;14(1):2349–2353.
  • Nielsen-Marsh CM, Hedges REM. Patterns of diagenesis in bone I: the effects of site environments. J Archaeol Sci. 2000;27(12):1139–1150. doi:10.1006/jasc.1999.0537.
  • Trueman CN, Privat K, Field J. Why do crystallinity values fail to predict the extent of diagenetic alteration of bone mineral? Palaeogeogr Palaeoclimatol Palaeoecol. 2008;266(3–4):160–167. doi:10.1016/j.palaeo.2008.03.038.
  • Campos PF, Craig OE, Turner-Walker G, Peacock E, Willerslev E, Gilbert MTP. DNA in ancient bone – where is it located and how should we extract it? Ann Anat - Anat Anzeiger. 2012;194(1):7–16. doi:10.1016/j.aanat.2011.07.003.
  • Doden E, Halves R. On the functional morphology of the human petrous bone. Am J Anat. 1984;169(4):451–462. doi:10.1002/aja.1001690407.
  • Jeffery N, Spoor F. Prenatal growth and development of the modern human labyrinth. J Anat. 2004;204(2):71–92. doi:10.1111/j.1469-7580.2004.00250.x.
  • Frisch T, Sorensen MS, Overgaard S, Bretlau P. Estimation of volume referent bone turnover in the otic capsule after sequential point labeling. Ann Otol Rhinol Laryngol. 2000;109(1):33–39. doi:10.1177/000348940010900106.
  • Jans MME, Nielsen-Marsh CM, Smith CI, Collins MJ, Kars H. Characterisation of microbial attack on archaeological bone. J Archaeol Sci. 2004;31(1):87–95. doi:10.1016/j.jas.2003.07.007.
  • Trueman CN, Martill DM. The long–term survival of bone: the role of bioerosion. Archaeometry. 2002;44(3):371–382. doi:10.1111/1475-4754.t01-1-00070.
  • Lebon M, Reiche I, Bahain JJ, Chadefaux C, Moigne AM, Fröhlich F, Sémah F, Schwarcz HP, Falguères C. New parameters for the characterization of diagenetic alterations and heat-induced changes of fossil bone mineral using fourier transform infrared spectrometry. J Archaeol Sci. 2010;37(9):2265–2276. doi:10.1016/j.jas.2010.03.024.
  • West PA, Torzilli PA, Chen C, Lin P, Camacho NP. Fourier Transform infrared imaging spectroscopy analysis of collagenase-induced cartilage degradation. J Biomed Opt. 2005;10(1):14015. doi:10.1117/1.1854131.
  • Jackson M, Choo LP, Watson PH, Halliday WC, Mantsch HH. Beware of connective tissue proteins: assignment and implications of collagen absorptions in infrared spectra of human tissues. Biochim Biophys Acta. 1995;1270(1):1–6. doi:10.1016/0925-4439(94)00056-V.
  • Lazarev YA, Lazareva AV, Shibnev VA, Esipova NG. Infrared spectra and structure of synthetic polytripeptides. Biopolymers. 1978;17(5):1197–1214. doi:10.1002/bip.1978.360170508.
  • Nielsen-Marsh C, Gernaey A, Turner-Walker G, Hedges R, Pike A, Collins M. The chemical degradation of bones. In: Cox M, Mays S, editors. Human osteology in archaeology and forensic science. London: Greenwich Medical Media; 2000. p. 439–451.
  • Salamon M, Tuross N, Arensburg B, Weiner S. Relatively well preserved DNA is present in the crystal aggregates of fossil bones. Proc Natl Acad Sci U S A. 2005;102(39):13783–13788. doi:10.1073/pnas.0503718102.
  • Wadsworth C, Procopio N, Anderung C, Carretero J-M, Iriarte E, Valdiosera C, Elburg R, Penkman K, Buckley M. Comparing ancient DNA survival and proteome content in 69 archaeological cattle tooth and bone samples from multiple European Sites. J Proteomics. 2017;158:1–8. doi:10.1016/j.jprot.2017.01.004.
  • Ottoni C, Bekaert B, Decorte R. DNA degradation: current knowledge and progress in DNA analysis. In: Schotsmans EMJ, Márquez-Grant N, Forbes SL, editors. Taphonomy of human remains: forensic analysis of the dead and the depositional environment. Chichester: Wiley; 2017. p. 65–80.
  • Monnier GF. A review of infrared spectroscopy in microarchaeology: methods, applications, and recent trends. J Archaeol Sci. 2018 April 1;18:806–823. Elsevier. doi:10.1016/j.jasrep.2017.12.029.
  • Lebon M, Zazzo A, Reiche I. Screening in situ bone and teeth preservation by ATR-FTIR mapping. Palaeogeogr Palaeoclimatol Palaeoecol. 2014;416:110–119. doi:10.1016/j.palaeo.2014.08.001.
  • Wright LE, Schwarcz HP. Infrared and isotopic evidence for diagenesis of bone apatite at Dos Pilas, Guatemala: palaeodietary implications. J Archaeol Sci. 1996;23(6):933–944. doi:10.1006/jasc.1996.0087.
  • Dal Sasso G, Lebon M, Angelini I, Maritan L, Usai D, Artioli G. Bone diagenesis variability among multiple burial phases at Al Khiday (Sudan) investigated by ATR-FTIR spectroscopy. Palaeogeogr Palaeoclimatol Palaeoecol. 2016;463:168–179. doi:10.1016/j.palaeo.2016.10.005.
  • Fredericks JD, Bennett P, Williams A, Rogers KD. FTIR spectroscopy: a new diagnostic tool to aid DNA analysis from heated bone. Forensic Sci Int Genet. 2012;6(3):375–380. doi:10.1016/j.fsigen.2011.07.014.
  • Collins MJ, Nielsen-Marsh CM, Hiller J, Smith CI, Roberts JP, Prigodich RV, Wess TJ, Csapo J, Millard AR, Turner-Walker G. The Survival of organic matter in bone: a review. Archaeometry. 2002;44(3):383–394. doi:10.1111/1475-4754.t01-1-00071.
  • Smith CI, Nielsen-Marsh CM, Jans MME, Collins MJ. Bone diagenesis in the European holocene I: patterns and mechanisms. J Archaeol Sci. 2007;34(9):1485–1493. doi:10.1016/j.jas.2006.11.006.
  • Querido W, Ailavajhala R, Padalkar M, Pleshko N. Validated approaches for quantification of bone mineral crystallinity using transmission fourier transform infrared (FT-IR), attenuated total reflection (ATR) FT-IR, and Raman spectroscopy. Appl Spectrosc. 2018;72(11):1581–1593. doi:10.1177/0003702818789165.
  • Leskovar T, Zupanič Pajnič I, Jerman I, Črešnar M. Preservation state assessment and post-mortem interval estimation of human skeletal remains using ATR-FTIR spectra. Aust J Forensic Sci. 2020;1–22. doi:10.1080/00450618.2020.1836254.
  • Orgel JP, Miller A, Irving TC, Fischetti RF, Hammersley AP, Wess TJ. The in situ supermolecular structure of type I collagen. Structure. 2001;9(11):1061–1069. doi:10.1016/S0969-2126(01)00669-4.
  • Zupanic Pajnic I, Zupanc T, Balazic J, Gersak ZM, Stojkovic O, Skadric I, Cresnar M. Prediction of autosomal STR typing success in ancient and second world war bone samples. Forensic Sci Int Genet. 2017;27:17–26. doi:10.1016/j.fsigen.2016.11.004.
  • Paget E, Monrozier LJ, Simonet P. Adsorption of DNA on clay minerals: protection against DNaseI and influence on gene transfer. FEMS Microbiol Lett. 1992;97(1–2):31–39. doi:10.1111/j.1574-6968.1992.tb05435.x.