1,161
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Elemental profiling of toxic and modern primers using ICP-MS, SEM-EDS, and XPS: an application in firearm discharge residue investigation

, , &
Pages 529-546 | Received 17 Aug 2021, Accepted 13 Feb 2022, Published online: 28 Feb 2022

References

  • Maitre M, Kirkbride KP, Horder M, Roux C, Beavis A. Current perspectives in the interpretation of gunshot residues in forensic science: a review. Forensic Sci Int. 2017;270:1–11. doi:10.1016/j.forsciint.2016.09.003
  • Yüksel B, Ozler-Yigiter A, Bora T, Sen N, Kayaalti Z. GFAAS determination of antimony, barium, and lead levels in gunshot residue swabs: an application in forensic chemistry. At Spectrosc. 2016;37(4):164–169. doi:10.46770/AS.2016.04.006
  • Feeney W, Vander Pyl C, Bell S, Trejos T. Trends in composition, collection, persistence, and analysis of IGSR and OGSR: a review. Forensic Chem. 2020:19. doi:10.1016/j.forc.2020.100250
  • Bell S, Feeney W. Single shot, single sample, single instrument detection of IGSR and OGSR using LC/MS/MS. Forensic Sci Int. 2019;299:215–222. doi:10.1016/j.forsciint.2019.04.002
  • Blakey LS, Sharples GP, Chana K, Birkett JW. Fate and behavior of gunshot residue—a review. J Forensic Sci. 2018;63(1):9–19. doi:10.1111/1556-4029.13555
  • Pyl CV, Ovide O, Ho M, Yuksel B, Trejos T. Spectrochemical mapping using laser induced breakdown spectroscopy as a more objective approach to shooting distance determination. Spectrochim Acta Part B At Spectrosc. 2019;152:93–101. doi:10.1016/j.sab.2018.12.010
  • Romanò S, De-Giorgio F, D’Onofrio C, Gravina L, Abate S, Romolo FS. Characterisation of gunshot residues from non-toxic ammunition and their persistence on the shooter’s hands. Int J Legal Med. 2020;134(3):1083–1094. doi:10.1007/s00414-020-02261-9
  • Galluzzi C. Priming mixture for cartridge primers for small firearms. US Patent Number: 7,056,401 B2; 2006.
  • Oommen Z, Pierce SM. Lead-free primer residues: a qualitative characterization of Winchester winclean, Remington/UMC leadless, federal ballisticlean, and speer lawman cleanfire handgun ammunition. J Forensic Sci. 2006;51(3):509–519. doi:10.1111/j.1556-4029.2006.00107.x
  • Yüksel B, Ho M, Ovide O, Pyl CV, Trejos T. Infrared imaging as a complementary aid in estimating muzzle-to-target shooting distance: an application on dark, patterned and bloody sample. Turkiye Klinikleri J Forensic Med Forensic Sci. 2019;16(2):73–80. doi:10.5336/forensic.2019-64837
  • Mistek E, Fikiet MA, Khandasammy SR, Lednev IK. Toward locard’s exchange principle: recent developments in forensic trace evidence analysis. Anal Chem. 2019;91(1):637–654. doi:10.1021/acs.analchem.8b04704
  • Comanescu MA, Millett TJ, Kubic TA. A study of background levels of antimony, barium, and lead on vehicle surface samples by graphite furnace atomic absorption. J Forensic Sci. 2019;64(2):565–569. doi:10.1111/1556-4029.13899
  • Boracchi M, Andreola S, Collini F, Gentile G, Lucchini G, Maciocco F, Sacchi GA, Zoja R. Can cadaverous pollution from environmental lead misguide to false positive results in the histochemical determination of gunshot residues? in-depth study using ultra-sensitive icp-ms analysis on cadaveric skin samples. Forensic Sci Int. 2018;292:23–26. doi:10.1016/j.forsciint.2018.08.041
  • Vanini G, Souza MO, Carneiro MTWD, Filgueiras PR, Bruns RE, Wanderson R. Multivariate optimisation of icp oes instrumental parameters for pb/ba/sb measurement in gunshot residues. Microchem J. 2015;120:58–63. doi:10.1016/j.microc.2015.01.003
  • Trejos T, Vander Pyl C, Menking-Hoggatt K, Alvarado AL, Arroyo LE. Fast identification of inorganic and organic gunshot residues by libs and electrochemical methods. Forensic Chem. 2018;8:146–156. doi:10.1016/j.forc.2018.02.006
  • Menking-Hoggatt K, Arroyo L, Curran J, Novel TT. LIBS method for micro-spatial chemical analysis of inorganic gunshot residues. J Chemom. 2021;35:1. doi:10.1002/cem.3208
  • Ferreira Imde S, Braz BF, da Silva L, Luna AS, RE S. Gunshot residue and gunshot residue-like material analysis using laser ablation inductively coupled plasma mass spectrometry imaging. Spectrochim Acta Part B At Spectrosc. 2021;177. doi:10.1016/j.sab.2021.106087
  • Pyl VC, Martinez-Lopez C, Menking-Hoggatt K, Trejos T. Analysis of primer gunshot residue particles by laser induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry. Analyst. 2021. doi:10.1039/d1an00689d
  • Schwoeble AJS, Strohmeier BR, Bunker KL, McAllister DR, Marquis JP, Piasecki JD, McAllister NM. Application of x-ray photoelectron spectroscopy (XPS) for the surface characterization of gunshot residue (GSR). Micros Today. 2011;19(2):40–45. doi:10.1017/S1551929511000113
  • Gassner A-L WC. Lc-ms method development and comparison of sampling materials for the analysis of organic gunshot residues. Forensic Sci Int. 2016;264:47–55. doi:10.1016/j.forsciint.2016.03.022
  • Bonnar C, Moule EC, Lucas N, Seyfang KE, Dunsmore RP, Popelka-Filcoff RS, Redman K, Paul Kirkbride K. Tandem detection of organic and inorganic gunshot residues using lc-ms and sem-eds. Forensic Sci Int. 2020;314:110389. doi:10.1016/j.forsciint.2020.110389
  • Bueno J, Sikirzhytski V, Lednev IK. Attenuated total reflectance-ft-ir spectroscopy for gunshot residue analysis: potential for ammunition determination. Anal Chem. 2013;85(15):7287–7294. doi:10.1021/ac4011843
  • Á Á, Yáñez J. Screening of gunshot residue in skin using attenuated total reflection Fourier transform infrared (atr ft-ir) hyperspectral microscopy. Appl Spectrosc. 2020;74(4):400–407. doi:10.1177/0003702819892930
  • Doty KC, Lednev IK. Raman spectroscopy for forensic purposes: recent applications for serology and gunshot residue analysis. Trends Anal Chem. 2018;103:215–222. doi:10.1016/j.trac.2017.12.003
  • Standard practice for gunshot residue analysis by scanning electron microscopy/energy dispersive X-ray spectrometry. ASTM E 1588-20. West Conshohocken (PA): ASTM International; 2020.
  • Martiny A, Campos APC, Sader MS, Pinto MAL. Sem/eds analysis and characterization of gunshot residues from Brazilian lead-free ammunition. Forensic Sci Int. 2008;177(1):17. doi:10.1016/j.forsciint.2007.07.005
  • Menking-Hoggatt K, Martinez C, Vander Pyl C, Heller E, Pollock E, Arrayo L, Trejos T, et al. Development of tailor-made inorganic gunshot residue (igsr) microparticle standards and characterization with a multi-technique approach. Talanta. 2021:225. doi:10.1016/j.talanta.2020.121984.
  • Duarte A, Silva LM, de Souza CT, Stori EM, Niekraszewicz LAB, Amaral L, Dias JF. Characterization of Brazilian ammunitions and their respective gunshot residues with ion beam techniques. Forensic Chem. 2018;7:94–102. doi:10.1016/j.forc.2017.09.001
  • Bailey MJ, Jeynes C. Characterisation of gunshot residue particles using self-consistent ion beam analysis. Nucl Inst Methods Phys Res, B. 2009;267(12):2265–2268. doi:10.1016/j.nimb.2009.03.031
  • Yuksel B, Kaya-Akyuzlu D, Kayaalti Z, Ozdemir F, Soylemez-Gokyer D, Soylemezoglu T. Study of blood iron vs. blood lead levels in beta-thalassemia patients in turkey: an application of analytical toxicology. Atomic Spectrosc. 2017;38(2):71–76.
  • Arica E, Yuksel B, Yener I, Dolak I, Gok E, Yilmaz E. Icp-ms determination of lead levels in autopsy liver samples: an application in forensic medicine. At Spectrosc. 2018;39(2):62–66. doi:10.46770/AS.2018.02.002
  • Yuksel B, Mergen G, Soylemezoglu T. Assessment of arsenic levels in human hair by hydride generation atomic absorption spectrometry: a toxicological application. At Spectrosc. 2010;31(1):1–5.
  • Bozalan M, Ali TV, Bayram Y, Gülin G, Söylemezoğlu T. Preliminary assessment of lead levels in soft plastic toys by flame atomic absorption spectroscopy. Turkish Bull Hyg Exp Biol. 2019;76(3):243–254. doi:10.5505/TurkHijyen.2019.58234
  • Yuksel B, Arica E. Assessment of toxic, essential, and other metal levels by ICP-MS in lake Eymir and Mogan in Ankara, Turkey: an environmental application. At Spectrosc. 2018;39(5):179–184. doi:10.46770/AS.2018.05.001
  • Yuksel B, Ustaoğlu F, Arica E. Impacts of a garbage disposal facility on the water quality of Çavuşlu stream in Giresun, Turkey: a health risk assessment study by a validated ICP-MS assay. Aquat Sci Eng. 2021;36(4):181–192. doi:10.26650/ASE2020845246
  • Stamouli A, Ludwig N, Larsson M, Colson B, Uhlig S, Fojtasek L, Machado F, Gunaratnam L. Survey of gunshot residue prevalence on the hands of individuals from various population groups in and outside Europe. Forensic Chem. 2021;23:100308. doi:10.1016/j.forc.2021.100308
  • Tahirukaj M, Olluri B, Surleva A. A study of the effect of working parameters and validation of SEM/EDS method for determination of elemental composition of commonly encountered GSR samples in shooting events in Kosovo. J Forensic Sci. 2021;66(6):2393–2404. doi:10.1111/1556-4029.14803
  • Yüksel B, Arica E, Assessing Reference ST. Levels of nickel and chromium in cord blood, maternal blood and placenta specimens from Ankara, Turkey. J Turk Ger Gynecol Assoc. 2021;22(3):187–195. doi:10.4274/jtgga.galenos.2021.2020.0202
  • Gisbert Algaba I, Geerts M, Jennes M, Coucke W, Opsteegh M, Cox E, Dorny P, Dierick K, De Craeye S. A more sensitive, efficient and ISO 17025 validated Magnetic Capture real time PCR method for the detection of archetypal Toxoplasma gondii strains in meat. Int J Parasitol. 2017;47(13):875–884. doi:10.1016/j.ijpara.2017.05.005
  • Yüksel B. Quantitative gc-fid analysis of heroin for seized drugs. Annal Clin Anal Med. 2020;11:1. doi:10.4328/ACAM.6139
  • Watts JF, Wolstenholme J. An introduction to surface analysis by XPS and AES. Chichester (UK): John Wiley & Sons Ltd.; 2003. p. 224. doi:10.1016/j.jconrel.2005.01.019
  • Erdoğan A, Aktürk M, Dursun Z. Chemical mapping of graphene-based material with X-ray Photoelectron Spectroscopy (XPS) using principal component analysis (PCA). Erzincan Univ J Sci Technol. 2019;12(2):820–832. doi:10.18185/erzifbed.489982
  • Yüksel B, Ustaoğlu F, Tokatli C, Islam MS. Ecotoxicological risk assessment for sediments of çavuşlu stream in giresun, Turkey: association between garbage disposal facility and metallic accumulation. Environ Sci Pollut Res Int. 2021. doi:10.1007/s11356-021-17023-2
  • Rijnders MR, Stamouli A, Bolck A. Comparison of gsr composition occurring at different locations around the firing position. J Forensic Sci. 2010;55(3):616–623. doi:10.1111/j.1556-4029.2009.01292.x
  • Brozek-Mucha Z, Nunziata F, Ross P, Mucha D. Towards a robust interpretation of forensic analysis of phosphorus and calcium traces in gunshot residue. J Anal At Spectrom. 2019;34(10):2004–2015. doi:10.1039/c9ja00188c
  • Şen N, Yüksel B. Theoretical studies on the thermodynamic properties and detonation properties of cyclotrimethylene trinitramine (RDX) with aluminum and boron metals. J Turkish Chem Soc, Section A. 2016;3(3):657–668. doi:10.18596/jotcsa.287301
  • Baer DR, Artyushkova K, Brundle CR, Castle JE, Engelhard MH, Gaskell KJ, Grant JT, Haasch RT, Linford MR, Powell CJ, et al. Practical guides for X-Ray Photoelectron Spectroscopy (XPS): first Steps in planning, conducting and reporting XPS measurements. J Vac Sci Technol A. 2019;37:031401. doi:10.1116/1.5065501
  • Watts JF. The potential for the application of X-ray photoelectron spectroscopy in forensic science. Surf Interface Anal. 2010;42:358–362. doi:10.1002/sia.3192
  • Erdoğan A, Esen M, Simpson R. Chemical imaging of human fingermark by x-ray photoelectron spectroscopy (XPS). J Forensic Sci. 2020;65(5):1730–1735. doi:10.1111/1556-4029.14483
  • Chastain J, King RC Jr. Handbook of X-ray photoelectron spectroscopy. USA: Perkin-Elmer; 1992. p. 261.
  • Yüksel B, Özler-Yiğiter A, Bora T, Bozkurt A, Çavuş M. Determination of antimony element in gunshot residue hand swap by graphite furnace atomic absorption spectrometry. J For Med. 2016;30(2):110–116. doi:10.5505/adlitip.2016.66934
  • Charles S, Geusens N, Vergalito E, Nys B. Interpol review of gunshot residue 2016-2019. Forensic Sci Int. 2020;2:416–428. doi:10.1016/j.fsisyn.2020.01.011
  • Costa RA, Motta LC, Destefani CA, Rodrigues RRT, Santo K, Aquije GMFV, Boldrini R, Athayde G, Carneiro MT, Romão W, et al. Gunshot residues (gsr) analysis of clean range ammunition using sem/edx, colorimetric test and icp-ms: a comparative approach between the analytical techniques. Microchem J. 2016;129:339–347. doi:10.1016/j.microc.2016.07.017
  • Nunziata F, Romolo F, Burnett B, Manna L, Orsenigo S, Donghi M. Molybdenum in gunshot residue: experimental evidences and detection challenges in the presence of lead and sulfur. Microsc Microanalysis. 2021;27(4):666–677. doi:10.1017/S1431927621000453
  • Jolliffe IT, Cadima J. Principal component analysis: a review and recent developments. Philos Trans Royal Soc A. 2016;374:2065. doi:10.1098/rsta.2015.0202
  • Fikret U. Ecotoxicological risk assessment and source identification of heavy metals in the surface sediments of çömlekci stream, Giresun, Turkey. Environ Forensics. 2021;22(1–2):130–142. doi:10.1080/15275922.2020.1806148
  • Ustaoğlu F, Islam MS. Potential toxic elements in sediment of some rivers at Giresun, northeast Turkey: a preliminary assessment for ecotoxicological status and health risk. Ecol Indic. 2020:113. doi:10.1016/j.ecolind.2020.106237
  • Gál L, Oravec M, Gemeiner P, Čeppan M. Principal component analysis for the forensic discrimination of black inkjet inks based on the vis-nir fibre optics reflection spectra. Forensic Sci Int. 2015;257:285–292. doi:10.1016/j.forsciint.2015.09.011
  • Ferreira LP, Lordeiro Rogério A, Nascentes Clésia C, Valladão Frederico N. Feasibility of a new method for identification and discrimination of gunshot residues by total reflection x-ray fluorescence and principal component analysis. J Braz Chem Soc. 2019;30(12):2582–2589. doi:10.21577/0103-5053.20190173

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.