911
Views
16
CrossRef citations to date
0
Altmetric
Articles

Semantic congruence in arithmetic: A new conceptual model for word problem solving

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Baranes, R., Perry, M., & Stigler, J. W. (1989). Activation of real-world knowledge in the solution of word problems. Cognition and Instruction, 6(4), 287–318. doi:10.1207/s1532690xci0604_1
  • Bassok, M. (2001). Semantic alignments in mathematical word problems. In D. Gentner, K. J. Holyoak, & B. N. Kokinov (Eds.), The analogical mind: Perspectives from cognitive science (pp. 401–433). Cambridge, MA: MIT Press.
  • Bassok, M., Chase, V. M., & Martin, S. A. (1998). Adding apples and oranges: Alignment of semantic and formal knowledge. Cognitive Psychology, 35(2), 99–134. doi:10.1006/cogp.1998.0675
  • Bassok, M., & Olseth, K. (1995). Object-based representations: Transfer between cases of continuous and discrete models of change. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21, 1522–1538. doi:10.1037/0278-7393.21.6.1522
  • Bassok, M., Pedigo, S. F., & Oskarsson, A. (2008). Priming addition facts with semantic relations. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34, 343–352. doi:10.1037/0278-7393.34.2.343
  • Bassok, M., Wu, L. L., & Olseth, K. L. (1995). Judging a book by its cover: Interpretative effects of content on problem-solving transfer. Memory & Cognition, 23(3), 354–367. doi:10.3758/BF03197236
  • Bell, A., Swan, M., & Taylor, G. (1981). Choice of operation in verbal problems with decimal numbers. Educational Studies in Mathematics, 12(4), 399–420. doi:10.1007/BF00308139
  • Blessing, S. B., & Ross, B. H. (1996). Content effects in problem categorization and problem solving. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22(3), 792. doi:10.1037/0278-7393.22.3.792
  • Braithwaite, D. W., & Goldstone, R. L. (2015). Effects of variation and prior knowledge on abstract concept learning. Cognition and Instruction, 33(3), 226–256. doi:10.1080/07370008.2015.1067215
  • Canobi, K. H. (2005). Children’s profiles of addition and subtraction understanding. Journal of Experimental Child Psychology, 92(3), 220–246. doi:10.1016/j.jecp.2005.06.001
  • Canobi, K. H., Reeve, R. A., & Pattison, P. E. (2003). Patterns of knowledge in children’s addition. Developmental Psychology, 39(3), 521–534. doi:10.1037/0012-1649.39.3.521
  • Carey, S. (2009). The origin of concepts. Oxford: Oxford University Press.
  • Carpenter, T. P., & Moser, J. M. (1982). The development of addition and subtraction problem-solving skills. In T. P. Carpenter, J. M. Moser & T. A. Romberg (Eds.), Addition and subtraction: A cognitive perspective (pp. 9–24). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Casasanto, D., Boroditsky, L., Phillips, W., Greene, J., Goswami, S., Bocanegra-Thiel, I., … Gil, D. (2004). How deep are effects of language on thought? Time estimation in speakers of English, Indonesian, Greek, and Spanish. In K. Forbus, D. Gentner, T. Regier (Eds.), Proceedings of the 26th annual conference of the Cognitive Science Society (pp. 575–580). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Charness, N., Tuffiash, M., Krampe, R., Reingold, E., & Vasyukova, E. (2005). The role of deliberate practice in chess expertise. Applied Cognitive Psychology, 19(2), 151–165. doi:10.1002/acp.1106
  • Chi, M. T. H., Feltovich, P. J., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5(2), 121–152. doi:10.1207/s15516709cog0502_2
  • Clement, E., & Richard, J.-F. (1997). Knowledge of domain effects in problem representation: The case of Tower of Hanoi isomorphs. Thinking & Reasoning, 3(2), 133–157. doi:10.1080/135467897394392
  • Coquin-Viennot, D., & Moreau, S. (2003). Highlighting the role of the episodic situation model in the solving of arithmetical problems. European Journal of Psychology of Education, 3, 267–279. doi:10.1007/BF03173248
  • Cowan, R., & Renton, M. (1996). Do they know what they are doing? Children’s use of economical addition strategies and knowledge of commutativity. Educational Psychology, 16(4), 407–420. doi:10.1080/0144341960160405
  • Cummins, D. D. (1991). Children’s interpretations of arithmetic word problems. Cognition and Instruction, 8(3), 261–289. doi:10.1207/s1532690xci0803_2
  • Cummins, D. D., Kintsch, W., Reusser, K., & Weimer, R. (1988). The role of understanding in solving word problems. Cognitive Psychology, 20(4), 405–438. (88)90011-4 doi:10.1016/0010-0285
  • Davidson, J. E., & Sternberg, R. J. (2003). The psychology of problem solving. New York, NY: Cambridge University Press.
  • Davis-Dorsey, J., Ross, S. M., & Morrison, G. R. (1991). The role of rewording and context personalization in the solving of mathematical word problems. Journal of Educational Psychology, 83(1), 61–68. doi:10.1037/0022-0663.83.1.61
  • De Corte, E., & Verschaffel, L. (1987). The effect of semantic structure on first graders’ strategies for solving addition and subtraction word problems. Journal for Research in Mathematics Education, 18(5), 363–381. doi:10.2307/749085
  • De Corte, E., Verschaffel, L., & De Win, L. (1985). Influence of rewording verbal problems on children’s problem representations and solution. Journal of Educational Psychology, 77(4), 460–470. doi:10.1037/0022-0663.77.4.460
  • Duncker, K. (1945). On problem-solving (L. S. Lees, Trans). Psychological Monographs, 58(5), i–113. (5, Whole No. 270). doi:10.1037/h0093599
  • Edens, K., & Potter, E. (2008). How students “unpack” the structure of a word problem: Graphic representations and problem solving. School Science and Mathematics, 108(5), 184–196. doi:10.1111/j.1949-8594.2008.tb17827.x
  • Ericsson, K. A. (2004). Deliberate practice and the acquisition and maintenance of expert performance in medicine and related domains. Academic Medicine, 79(Supplement), S70–S81. doi:10.1097/00001888-200410001-00022
  • Ericsson, K. A. (2008). Deliberate practice and acquisition of expert performance: A general overview. Academic Emergency Medicine: Official Journal of the Society for Academic Emergency Medicine, 15(11), 988–994. doi:10.1111/j.1553-2712.2008.00227.x
  • Ericsson, K. A., Krampe, R. T., & Tesch-Römer, C. (1993). The role of deliberate practice in the acquisition of expert performance. Psychological Review, 100(3), 363–406. https:// doi:10.1037/0033-295X.100.3.363
  • Fischbein, E. (1989). Tacit models and mathematical reasoning. For the Learning of Mathematics, 9(2), 9–14.
  • Fischbein, E., Deri, M., Nello, M. S., & Marino, M. S. (1985). The role of implicit models in solving verbal problems in multiplication and division. Journal for Research in Mathematics Education, 16(1), 3–17. doi:10.2307/748969
  • Fyfe, E. R., McNeil, N. M., Son, J. Y., & Goldstone, R. L. (2014). Concreteness fading in mathematics and science instruction: A systematic review. Educational Psychology Review, 26(1), 9–25. doi:10.1007/s10648-014-9249-3
  • Gamo, S., Sander, E., & Richard, J.-F. (2010). Transfer of strategy use by semantic recoding in arithmetic problem solving. Learning and Instruction, 20(5), 400–410. doi:10.1016/j.learninstruc.2009.04.001
  • Gelman, S. A. (2003). The essential child: Origins of essentialism in everyday thought. Oxford: Oxford University Press.
  • Gentner, D. (1988). Metaphor as structure mapping: The relational shift. Child Development, 59(1), 47–59. doi:10.2307/1130388
  • Gick, M. L., & Holyoak, K. J. (1983). Schema induction and analogical transfer. Cognitive Psychology, 15(1), 1–38. doi:10.1016/0010-0285(83)90002-6
  • Goswami, U., & Brown, A. L. (1990). Melting chocolate and melting snowmen: Analogical reasoning and causal relations. Cognition, 35(1), 69–95. (90)90037-K doi:10.1016/0010-0277
  • Graeber, A. O., Tirosh, D., & Glover, R. (1989). Preservice teachers’ misconceptions in solving verbal problems in multiplication and division. Journal for Research in Mathematics Education, 20(1), 95–102. doi:10.2307/749100
  • Greer, B. (1992). Multiplication and division as models of solutions. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 276–295). New York, NY: Macmillan.
  • Griggs, R. A., & Cox, J. R. (1982). The elusive thematic‐materials effect in Wason’s selection task. British Journal of Psychology, 73(3), 407–420. doi:10.1111/j.2044-8295.1982.tb01823.x
  • Gros, H., Sander, E., & Thibaut, J. P. (2016). “This problem has no solution”: When closing one of two doors results in failure to access any. In A. Papafragou, D. Grodner, D. Mirman, & J. C. Trueswell (Eds.), Proceedings of the 38th annual conference of the Cognitive Science Society (pp. 1271–1276). Austin, TX: Cognitive Science Society.
  • Gros, H., Sander, E., & Thibaut, J. P. (2019). When masters of abstraction run into a concrete wall: Experts failing arithmetic word problems. Psychonomic Bulletin & Review, 26(5), 1738–1746. doi:10.3758/s13423-019-01628-3
  • Gros, H., Thibaut, J.-P., & Sander, E. (2017). The nature of quantities influences the representation of arithmetic problems: Evidence from drawings and solving procedures in children and adults. In B. C. Love, K. McRae, & V. M. Sloutsky (Eds.), Proceedings of the 39th annual conference of the Cognitive Science Society. London, UK: Cognitive Science Society.
  • Große, C. S., & Renkl, A. (2006). Effects of multiple solution methods in mathematics learning. Learning and Instruction, 16(2), 122–138. doi:10.1016/j.learninstruc.2006.02.001
  • Guthormsen, A. M., Fisher, K. J., Bassok, M., Osterhout, L., DeWolf, M., & Holyoak, K. J. (2016). Conceptual integration of arithmetic operations with real‐world knowledge: Evidence from event‐related potentials. Cognitive Science, 40(3), 723–757. doi:10.1111/cogs.12238
  • Gvozdic, K., & Sander, E. (2017). Solving additive word problems: Intuitive strategies make the difference. In B. C. Love, K. McRae, & V. M. Sloutsky (Eds.), Proceedings of the 39th annual conference of the Cognitive Science Society. London, UK: Cognitive Science Society.
  • Hegarty, M., Mayer, R. E., & Green, C. E. (1992). Comprehension of arithmetic word problems: Evidence from students’ eye fixations. Journal of Educational Psychology, 84(1), 76–84.
  • Hegarty, M., Mayer, R. E., & Monk, C. A. (1995). Comprehension of arithmetic word problems: A comparison of successful and unsuccessful problem solvers. Journal of Educational Psychology, 87(1), 18–32. doi:10.1037/0022-0663.87.1.18
  • Hofstadter, D. R., & Sander, E. (2013). Surfaces and essences: Analogy as the fuel and fire of thinking. New York, NY: Basic Books.
  • Hudson, T. (1983). Correspondences and numerical differences between disjoint sets. Child Development, 54(1), 84–90. doi:10.2307/1129864
  • Ibarra, C. G., & Lindvall, C. M. (1982). Factors associated with the ability of kindergarten children to solve simple arithmetic story problems. The Journal of Educational Research, 75(3), 149–156. doi:10.1080/00220671.1982.10885372
  • Johnson-Laird, P. N. (1980). Mental models in cognitive science. Cognitive Science, 4(1), 71–115. doi:10.1207/s15516709cog0401_4
  • Johnson-Laird, P. N. (1983). Mental models: Towards a cognitive science of language, inference, and consciousness (No. 6). Cambridge, MA: Harvard University Press.
  • Johnson-Laird, P. N. (2010). Mental models and human reasoning. Proceedings of the National Academy of Sciences, 107(43), 18243–18250. doi:10.1073/pnas.1012933107
  • Jordan, N. C., Huttenlocher, J., & Levine, S. C. (1992). Differential calculation abilities in young children from middle- and low-income families. Developmental Psychology, 28(4), 644–653. doi:10.1037/0012-1649.28.4.644
  • Kintsch, W., & Greeno, J. G. (1985). Understanding and solving word arithmetic problems. Psychological Review, 92(1), 109–129. doi:10.1037//0033-295X.92.1.109
  • Koedinger, K. R., Alibali, M. W., & Nathan, M. J. (2008). Trade‐offs between grounded and abstract representations: Evidence from algebra problem solving. Cognitive Science: A Multidisciplinary Journal, 32(2), 366–397. doi:10.1080/03640210701863933
  • Koedinger, K. R., & Nathan, M. J. (2004). The real story behind story problems: Effects of representations on quantitative reasoning. The Journal of the Learning Sciences, 13(2), 129–164. doi:10.1207/s15327809jls1302_1
  • Kotovsky, L., & Gentner, D. (1996). Comparison and categorization in the development of relational similarity. Child Development, 67(6), 2797–2822. doi:10.1111/j.1467-8624.1996.tb01889.x
  • Kotovsky, K., Hayes, J. R., & Simon, H. A. (1985). Why are some problems hard? Evidence from Tower of Hanoi. Cognitive Psychology, 17(2), 248–294. doi:10.1016/0010-0285(85)90009-X
  • Kouba, V. L. (1989). Children’s solution strategies for equivalent set multiplication and division word problems. Journal for Research in Mathematics Education, 20(2), 147–158. doi:10.2307/749279
  • Lakoff, G., & Núñez, R. E. (2000). Where mathematics comes from: How the embodied mind brings mathematics into being (Nachdr.). New York, NY: Basic Books.
  • Lehtinen, E., Hannula-Sormunen, M., McMullen, J., & Gruber, H. (2017). Cultivating mathematical skills: From drill-and-practice to deliberate practice. ZDM, 49(4), 625–636. doi:10.1007/s11858-017-0856-6
  • Leikin, R., & Lev, M. (2007). Multiple solution tasks as a magnifying glass for observation of mathematical creativity. In J. H. Woo, H. C. Lew, K. S. Park, & D. Y. Seo (Eds.), Proceedings of the 31st international conference for the psychology of mathematics education (Vol. 3, pp. 161–168). Seoul, Korea: The Korea Society of Educational Studies in Mathematics.
  • Mani, K., & Johnson-Laird, P. N. (1982). The mental representation of spatial descriptions. Memory & Cognition, 10(2), 181–187. doi:10.3758/BF03209220
  • Nesher, P., Greeno, J. G., & Riley, M. S. (1982). The development of semantic categories for addition and subtraction. Educational Studies in Mathematics, 13(4), 373–394. doi:10.1007/BF00366618
  • Newell, A., & Simon, H. A. (1972). Human problem solving (Vol. 104, No. 9). Englewood Cliffs, NJ: Prentice-Hall.
  • Novick, L. R. (1988). Analogical transfer, problem similarity, and expertise. Journal of Experimental Psychology: Learning, Memory, and Cognition, 14(3), 510. doi:10.1037//0278-7393.14.3.510
  • Paquette, G., Léonard, M., Lundgren-Cayrol, K., Mihaila, S., & Gareau, D. (2006). Learning design based on graphical knowledge-modeling. Journal of Educational Technology & Society, 9(1), 97–112.
  • Plato (2009). Plato’s Phaedrus. Millis, MA: Agora Publications.
  • Prather, R. W., & Alibali, M. W. (2009). The development of arithmetic principle knowledge: How do we know what learners know? Developmental Review, 29(4), 221–248. doi:10.1016/j.dr.2009.09.001
  • Resnick, L. B. (1992). From protoquantities to operators: Building mathematical competence on a foundation of everyday knowledge. Analysis of Arithmetic for Mathematics Teaching, 19, 275–323.
  • Resnick, L. B. (1994). Situated rationalism: Biological and social preparation for learning. In L. A. Hirschfeld & S. A. Gelman (Eds.), Mapping the mind: Domain specificity in cognition and culture (pp. 474–493). Cambridge, UK: Cambridge University Press.
  • Reusser, K. (1988). Problem solving beyond the logic of things: Contextual effects on understanding and solving word problems. Instructional Science, 17(4), 309–338. doi:10.1007/BF00056219
  • Reusser, K. (1989). Textual and situational factors in solving mathematical word problems (Research Rep. No. 7). Bern, Switzerland: University of Bern, Department of Educational Psychology.
  • Reusser, K. (1990). From text to situation to equation: Cognitive simulation of understanding and solving mathematical word problems. In H. Mandl, E. De Corte, N. Bennet, & H. F. Friedrich (Eds.), Learning and instruction, European research in an international context, (Vol. II). New York, NY: Pergamon Press.
  • Reusser, K. (1993). Tutoring systems and pedagogical theory: Representational tools for understanding, planning, and reflection in problem solving. Computers as Cognitive Tools, 1, 143–177.
  • Richland, L. E., Stigler, J. W., & Holyoak, K. J. (2012). Teaching the conceptual structure of mathematics. Educational Psychologist, 47(3), 189–203. doi:10.1080/00461520.2012.667065
  • Riley, M. S., Greeno, J. G., & Heller, J. I. (1983). Development of children’s problem-solving ability in arithmetic. In H. Ginsburg (Ed.), The development of mathematical thinking (pp. 153–196). New York, NY: Academic Press.
  • Ross, B. H. (1987). This is like that: The use of earlier problems and the separation of similarity effects. Journal of Experimental Psychology: Learning, Memory, and Cognition, 13(4), 629. doi:10.1037/0278-7393.13.4.629
  • Ross, B. H., & Bradshaw, G. L. (1994). Encoding effects of remindings. Memory & Cognition, 22(5), 591–605. doi:10.3758/bf03198398
  • Rumelhart, D. E. (1980). Schemata: The building blocks of cognition. In R. J. Spiro, B. C. Bruce, & W. F. Brewer (Eds.), Theoretical issues in reading comprehension (pp. 33–58). Hillsdale, NJ: Erlbaum.
  • Sander, E., & Richard, J.-F. (2005). Analogy and transfer: Encoding the problem at the right level of abstraction. Proceedings of the 27th Annual Conference of the Cognitive Science Society, Stresa, Italy, pp. 1925–1930.
  • Schank, R. C. (1975). The role of memory in language processing. In C. N. Cofer (Ed.), The structure of human memory (pp. 162–189). San Francisco, CA: Freeman.
  • Schank, R. C., & Abelson, R. P. (1977). Scripts, plans and understanding: An inquiry into human knowledge structures. Oxford, UK: Lawrence Erlbaum.
  • Schoenfeld, A. H., & Herrmann, D. J. (1982). Problem perception and knowledge structure in expert and novice mathematical problem solvers. Journal of Experimental Psychology: Learning, Memory, and Cognition, 8(5), 484. doi:10.1037/0278-7393.8.5.484
  • Shute, V. J., & Zapata-Rivera, D. (2012). Adaptive educational systems. In P. Durlach (Ed.), Adaptive technologies for training and education (pp. 7–27). New York, NY: Cambridge University Press.
  • Silver, E. A. (1981). Recall of mathematical problem information: Solving related problems. Journal for Research in Mathematics Education, 12(1), 54–64. doi:10.3758/10.2307/748658
  • Squire, S., & Bryant, P. (2002). From sharing to dividing: Young children’s understanding of division. Developmental Science, 5(4), 452–466. doi:10.1111/1467-7687.00240
  • Stanovich, K. E. (1999). Who is rational? Studies of individual differences in reasoning. Mahwah, NJ: Lawrence Erlbaum.
  • Staub, F. C., & Reusser, K. (1992). The role of presentational factors in understanding and solving mathematical word problems. Paper presented at the meeting of the American Educational Research Association, San Francisco, CA.
  • Staub, F. C., & Reusser, K. (1995). The role of presentational structures in understanding and solving mathematical word problems. In C. A. Weaver, S. Mannes, & C. R. Fletcher (Eds.), Discourse comprehension (pp. 285–305). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Stern, E., & Lehrndorfer, A. (1992). The role of situational context in solving word problems. Cognitive Development, 7(2), 259–268. doi:10.1016/0885-2014(92)90014-I
  • Tchounikine, P. (2011). Educational software engineering. In Computer science and educational software design (pp. 111–122). Berlin, Heidelberg: Springer.
  • Thevenot, C. (2010). Arithmetic word problem solving: Evidence for the construction of a mental model. Acta Psychologica, 133(1), 90–95. doi:10.1016/j.actpsy.2009.10.004
  • Thevenot, C. (2017). Arithmetic word problem solving: The role of prior knowledge. In D. C. Geary, D. B. Berch, R. J. Ochsendorf, & K. M. Koepke (Eds.), Acquisition of complex arithmetic skills and higher-order mathematics concepts (pp. 47–66). Amsterdam: Elsevier.
  • Thevenot, C., & Barrouillet, P. (2015). Arithmetic word problem solving and mental representations. In R. Cohen Kadosh & A. Dowker (Eds.), The Oxford handbook of numerical cognition (pp. 158–179). New York, NY: Oxford University Press.
  • Thevenot, C., & Oakhill, J. (2005). The strategic use of alternative representations in arithmetic word problem solving. The Quarterly Journal of Experimental Psychology Section A, 58(7), 1311–1323. doi:10.1080/02724980443000593
  • Thevenot, C., & Oakhill, J. (2006). Representations and strategies for solving dynamic and static arithmetic word problems: The role of working memory capacities. European Journal of Cognitive Psychology, 18(5), 756–775. doi:10.1080/09541440500412270
  • Tirosh, D., & Graeber, A. O. (1991). The effect of problem type and common misconceptions on preservice elementary teachers’ thinking about division. School Science and Mathematics, 91(4), 157–163. doi:10.1111/j.1949-8594.1991.tb12070.x
  • Van Dijk, T. A., & Kintsch, W. (1983). Strategies of discourse comprehension. New York, NY: Academic Press.
  • Vergnaud, G. (1983). Multiplicative structures. In R. Lesh & M. Landau (Eds.), Acquisition of mathematics concepts and processes (pp. 127–174). New York, NY: Academic Press.
  • Verschaffel, L. (1994). Using retelling data to study elementary school children’s representations and solutions of compare problems. Journal for Research in Mathematics Education, 25(2), 141–165. doi:10.2307/749506
  • Verschaffel, L., & De Corte, E. (1997). Teaching realistic mathematical modeling in the elementary school: A teaching experiment with fifth graders. Journal for Research in Mathematics Education, 28(5), 577–601. doi:10.2307/749692
  • Vicente, S., Orrantia, J., & Verschaffel, L. (2007). Influence of situational and conceptual rewording on word problem solving. British Journal of Educational Psychology, 77(4), 829–848. doi:10.1348/000709907X178200
  • Ward, P., Hodges, N. J., Starkes, J. L., & Williams, M. A. (2007). The road to excellence: Deliberate practice and the development of expertise. High Ability Studies, 18(2), 119–153. doi:10.1080/13598130701709715

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.