Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 34, 2004 - Issue 6
67
Views
19
CrossRef citations to date
0
Altmetric
Research Article

Quantitative structure-activity relationships within a homologous series of 7-alkoxyresorufins exhibiting activity towards CYP1A and CYP2B enzymes: molecular modelling studies on key members of the resorufin series with CYP2C5-derived models of human CYP1A1, CYP1A2, CYP2B6 and CYP3A4

, &
Pages 501-513 | Received 06 Jan 2004, Published online: 22 Sep 2008

Reference

  • BURKE, M. D. and MAYER, R. T., 1983, Differential effects of phenobarbitone and 3-methyl cholanthrene induction in the hepatic microsomal metabolism and cytochrome P450 binding of phenoxazone and a homologous series of its n-alkyl ethers (alkoxyresorufins). Chemico-Biological Interactions, 45, 243–258.
  • BURKE, M. D., THOMPSON, S., ELCOMBE, C. R., HALPERT, J., HAAPARANTA, T. and MAYER, R. T., 1985, Ethoxy-, pentoxy- and benzyloxy phenoxazones and homologous: a series of substrates to distinguish between different induced cytochromes P450. Biochemical Pharmacology, 34, 3337–3345.
  • BURKE, M. D., THOMPSON, S., WEAVER, R. J., WOLF, C. R. and MAYER, R. T., 1994, Cytochrome P450 specificities of alkoxyresorufin 0-dealkylation in human and rat liver. Biochemical Pharmacology, 48, 923–936.
  • DOMANSKI, T. L. and HALPERT, J. R., 2001, Analysis of mammalian cytochrome P450 structure and function by site-directed mutagenesis. Current Drug Metabolism, 2, 117–137.
  • DOMANSKI, T. L., HE, Y.-Q., SCOTT, E. E., WANG, Q. and HALPERT, J. R., 2001, The role of cytochrome P450 2B1 substrate recognition site residues 115, 294, 297, 298 and 362 in the oxidation of steroids and 7-alkoxycoumarins. Archives of Biochemistry and Biophysics, 394, 21–28.
  • EKINS, S. and WRIGHTON, S. A., 1999, The role of CYP2B6 in human xenobiotic metabolism. Drug Metabolism Reviews, 31, 719–754.
  • GOTOH, 0., 1992, Substrate recognition sites in cytochrome P450 family 2 (CYP2) proteins inferred from comparative analysis of amino acid and coding nucleotide sequences. Journal of Biological Chemistry, 267, 83–90.
  • HADJOKAS, N. E., DAI, R., FRIEDMAN, F. K., SPENCE, M. J., CUSACK, B. J., VESTAL, R. E. and MA, Y., 2002, Arginine to lysine 108 substitution in recombinant CYP1A2 abolishes methoxy-resorufin metabolism in lymphoblastoid cells. British Journal of Pharmacology, 136, 347–352.
  • KAWAJIRI, K. and HAYASHI, S.-I., 1996, The CYP1 family. In C. Ioannides (ed.), Cytochromes P450 — Metabolic and Toxicological Aspects (Boca Raton: CRC Press), pp. 77–97.
  • KENWORTHY, K. E., BLOOMER, J. C., CLARKE, S. E. and HOUSTON, J. B., 1999, CYP3A4 drug interactions: correlation of 10 in vitro probe substrates. British Journal of Clinical Pharmacology, 48, 716–727.
  • LEWIS, D. F. V., 2001, Guide to Cytochromes P450 Structure and Function (London: Taylor & Francis). LEWIS, D. F. V., 2002a, Homology modelling of human CYP2 family enzymes based on the CYP2C5 crystal structure. Xenobiotica, 34, 305–323.
  • LEWIS, D. F. V., 2002b, Modelling human cytochromes P450 involved in drug metabolism from the CYP2C5 crystallographic template. Journal of Inorganic Biochemistry, 91, 502–514.
  • LEWIS, D. F. V., 2003a, Quantitative structure—activity relationships (QSARs) within the cytochrome P450 system: QSARs describing substrate binding, inhibition and induction of P450s. Inflammopharmacology, 11, 43–73.
  • LEWIS, D. F. V., 2003b, On the estimation of binding affinity (AGbd) for human P450 substrates based on Km and KD values. Current Drug Metabolism, 4, 331–340.
  • LEWIS, D. F. V., GILLAM, E. M. J., EVERETT, S. and SHIMADA, T., 2003b, Molecular modelling of human CYP1B1 substrate interactions and investigation of allelic variant effects on metabolism. Chemico-Biological Interactions, 145, 281–295.
  • LEWIS, D. F. V., IOANNIDES, C. and PARKE, D. V., 1986, Molecular dimensions of the substrate binding site of cytochrome P-448. Biochemical Pharmacology, 35, 2179–2185.
  • LEWIS, D. F. V., IOANNIDES, C. and PARKE, D. V., 1987, Structural requirements for substrates of cytochromes P-450 and P-448. Chemico-Biological Interactions, 64, 39–60.
  • LEWIS, D. F. V., IOANNIDES, C. and PARKE, D. V., 1995, Molecular orbital-generated QSARs in an homologous series of alkoxyresorufins and studies of their interactive docking with cytochromes P450. Xenobiotica, 25, 1355–1369.
  • LEWIS, D. F. V., LAKE, B. G., DICKINS, M. and GOLDFARB, P. S., 2002, Molecular modelling of CYP2B6 based on homology with the CYP2C5 crystal structure: analysis of enzyme—substrate interactions. Drug Metabolism and Drug Interactions, 19, 115–135.
  • LEWIS, D. F. V., LAKE, B. G., DICKINS, M., UENG, Y.-F. and GOLDFARB, P. S., 2003a, Homology modelling of human CYP1A2 based on the CYP2C5 crystallographic template structure. Xenobiotica, 33, 239–254.
  • LEWIS, D. F. V., LAKE, B. G., GEORGE, S., DICKINS, M., BERESFORD, A. P., EDDERSHAW, P. J., TARBIT, M. M., GOLDFARB, P. S. and GUENGERICH, F. P., 1999, Molecular modelling of CYP1 family isoforms CYP1A1, CYP1A2, CYP1A6 and CYP1B1 based on sequence homology with CYP102. Toxicology, 139, 53–79.
  • Liu, J., ERICKSEN, S. S., BESSPIATA, D., FISHER, C. W. and SZKLARZ, G. D., 2003, Characterization of substrate binding to cytochrome P450 1A1 using molecular modeling and kinetic analyses: case of residue 382. Drug Metabolism and Disposition, 31, 412–420.
  • LUBET, R. A., SYI, J.-L., NELSON, J. 0. and Nims, R. W., 1990, Induction of hepatic cytochrome P450 mediated alkoxyresorufin 0-dealkylase activities in different species by prototype P450 inducers. Chemico-Biological Interactions, 75, 325–339.
  • Lum, P. Y., 1987, Cytochrome P-448 and the activation of toxic chemicals and carcinogens. PhD thesis, University of Surrey, Guildford.
  • Lum, P. Y., BURKE, M. D., MAYER, R. T. and IOANNIDES, C., 1986, Alkoxyresorufin 0-dealkylases: association with the murine Ah locus. Cancer Letters, 32, 255–262.
  • MANNHOLD, R., DROSS, K. and SONNTAG, C., 1996, Estimation of lipophilicity by reversed-phase thin-layer chromatography. In V. Pliska, B. Testa and H. Van de Waterbeemd (eds), Lipophilicity in Drug Action and Toxicology (Weinheim: VCH), pp. 141–156.
  • MAYER, R. T., NETTER, K. J., HEUBEL, F., HAHNEMANN, B., BUCHHEISTER, A., MAYER, G. K. and BURKE, M. D., 1990, 7-Alkoxyquinolines: new fluorescent substrates for cytochrome P450 monooxygenases. Biochemical Pharmacology, 40, 1645–1655.
  • NERURKAR, P. V., PARK, S. S., THOMAS, P. E., Nims, R. W. and LUBET, R. A., 1993, Methoxy-resorufin and benzyloxyresorufin: substrates preferentially metabolized by cytochromes P4501A2 and 2B, respectively, in the rat and mouse. Biochemical Pharmacology, 46, 933–943.
  • Nims, R. W. and LUBET, R. A., 1996, The CYP2B subfamily. In C. Ioannides (ed.), Cytochromes P450 — Metabolic and Toxicological Aspects (Boca Raton: CRC Press), pp. 135–160.
  • RENDIC, S., 2002, Summary of information on human CYP enzymes: human P450 metabolism data. Drug Metabolism Reviews, 34, 83–448.
  • SANGSTER, J., 1989, Octanol—water partition coefficients of simple organic compounds. Journal of Physical and Chemical Reference Data, 18, 1111–1229.
  • SCHWARZ, D., KISSELER, P., SCHUNK, W.-H., CHARNOGOLOV, A., BOIDOL, W., CASCORBI, I. and ROOTS, I., 2000, Allelic variants of human cytochrome P450 1A1 (CYP1A1): effect of T461N and I462V substitutions on steroid hydroxylase specificity. Pharmacogenetics, 10, 519–530.
  • STRESSER, D. M., BLANCHARD, A. P., TURNER, S. D., ERVE, J. C. L., DANDENEAN, A. A., MILLER, V. P. and CRESPI, C. L., 2000, Substrate-dependent modulation of CYP3A4 catalytic activity: analysis of 27 test compounds with four fiuorometric substrates. Drug Metabolism and Disposition, 28, 1440–1448.
  • STRESSER, D. M., TURNER, S. D., BLANCHARD, A. P., MILLER, V. P. and CRESPI, C. L., 2002, Cytochrome P450 fiuorometric substrates: identification of isoform-selective probes for rat CYP2D2 and human CYP3A4. Drug Metabolism and Disposition, 30, 845–852.
  • TURESKY, R. J., CONSTABLE, A., RICHOZ, J., VARGA, N., MARKOVIC, J., MARTIN, M. V. and GUENGERICH, F. P., 1998, Activation of heterocyclic aromatic amines by rat and human liver microsomes and by purified rat and human cytochrome P450 1A2. Chemical Research in Toxicology, 11, 925–936.
  • WAXMAN, D. J., LAPENSON, D. P., AOYAMA, T., GELBOIN, H. V., GONZALEZ, F. J. and KORZEKWA, K., 1991, Steroid hormone hydroxylase specificities of eleven cDNA-expressed human cytochrome P45 Os. Archives of Biochemistry and Biophysics, 290, 160–166.
  • WILLIAMS, P. A., COSME, J., SRIDHAR, V., JOHNSON, E. F. and McREE, D. E., 2000, Mammalian cytochrome P450 monooxygenase: structural adaptations for membrane binding and functional diversity. Molecular Cell, 5, 121–131.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.