1,098
Views
79
CrossRef citations to date
0
Altmetric
Research Article

The SLC16 monocaboxylate transporter family

&
Pages 1072-1106 | Received 24 Jan 2008, Accepted 25 Feb 2008, Published online: 22 Sep 2008

References

  • Alkemade A, Friesema EC, Kuiper GG, Wiersinga WM, Swaab DF, Visser TJ, Fliers E. Novel neuroanatomical pathways for thyroid hormone action in the human anterior pituitary. European Journal of Endocrinology/European Federation of Endocrine Societies 2006; 154(3)491–500
  • Alkemade A, Friesema EC, Unmehopa UA, Fabriek BO, Kuiper GG, Leonard JL, Wiersinga WM, Swaab DF, Visser TJ, Fliers E. Neuroanatomical pathways for thyroid hormone feedback in the human hypothalamus. Journal of Clinical Endocrinology and Metabolism 2005; 90(7)4322–4334
  • Aubert A, Costalat R, Magistretti PJ, Pellerin L. Brain lactate kinetics: Modeling evidence for neuronal lactate uptake upon activation. Proceedings of the National Academy of Sciences, USA 2005; 102(45)16448–16453
  • Baker SK, McCullagh KJ, Bonen A. Training intensity-dependent and tissue-specific increases in lactate uptake and MCT-1 in heart and muscle. Journal of Applied Physiology 1998; 84(3)987–994
  • Barth JD, Kruisbrink OA, Van Dijk AL. Inhibitors of hydroxymethylglutaryl coenzyme A reductase for treating hypercholesterolaemia. British Medical Journal (Clinical Research) 1990; 301(6753)669
  • Ben-Horin H, Tassini M, Vivi A, Navon G, Kaplan O. Mechanism of action of the antineoplastic drug lonidamine: 31P and 13C nuclear magnetic resonance studies. Cancer Research 1995; 55(13)2814–2821
  • Bergersen L, Waerhaug O, Helm J, Thomas M, Laake P, Davies AJ, Wilson MC, Halestrap AP, Ottersen OP. A novel postsynaptic density protein: The monocarboxylate transporter MCT2 is co-localized with delta-glutamate receptors in postsynaptic densities of parallel fiber-Purkinje cell synapses. Experimental Brain Research. Experimentelle Hirnforschung 2001; 136(4)523–534
  • Bergersen LH. Is lactate food for neurons? Comparison of monocarboxylate transporter subtypes in brain and muscle. Neuroscience 2007; 145(1)11–19
  • Bhattacharya I, Boje KM. GHB (gamma-hydroxybutyrate) carrier-mediated transport across the blood–brain barrier. Journal of Pharmacology and Experimental Therapeutics 2004; 311(1)92–98
  • Bishop D, Edge J, Thomas C, Mercier J. High-intensity exercise acutely decreases the membrane content of MCT1 and MCT4 and buffer capacity in human skeletal muscle. Journal of Applied Physiology 2007; 102(2)616–621
  • Blaheta RA, Michaelis M, Driever PH, Cinatl J, Jr. Evolving anticancer drug valproic acid: Insights into the mechanism and clinical studies. Medicinal Research Reviews 2005; 25(4)383–397
  • Bonen A. The expression of lactate transporters (MCT1 and MCT4) in heart and muscle. European Journal of Applied Physiology 2001; 86(1)6–11
  • Bonen A, Heynen M, Hatta H. Distribution of monocarboxylate transporters MCT1–MCT8 in rat tissues and human skeletal muscle. Applied Physiology, Nutrition, and Metabolism [Physiologie Appliquee, Nutrition et Metabolisme] 2006; 31(1)31–39
  • Boyd LM, Richardson WJ, Chen J, Kraus VB, Tewari A, Setton LA. Osmolarity regulates gene expression in intervertebral disc cells determined by gene array and real-time quantitative RT-PCR. Annals of Biomedical Engineering 2005; 33(8)1071–1077
  • Brawer MK. Lonidamine: Basic science and rationale for treatment of prostatic proliferative disorders. Reviews in Urology 2005; 7(Suppl. 7)S21–S26
  • Brizel DM, Schroeder T, Scher RL, Walenta S, Clough RW, Dewhirst MW, Mueller-Klieser W. Elevated tumor lactate concentrations predict for an increased risk of metastases in head-and-neck cancer. International Journal of Radiation Oncology, Biology, Physics 2001; 51(2)349–353
  • Broer S. Amino acid transport across mammalian intestinal and renal epithelia. Physiological Reviews 2008; 88(1)249–286
  • Broer S, Broer A, Schneider HP, Stegen C, Halestrap AP, Deitmer JW. Characterization of the high-affinity monocarboxylate transporter MCT2 in Xenopus laevis oocytes. Biochemical Journal 1999; 341(Pt 3)529–535
  • Broer S, Rahman B, Pellegri G, Pellerin L, Martin JL, Verleysdonk S, Hamprecht B, Magistretti PJ. Comparison of lactate transport in astroglial cells and monocarboxylate transporter 1 (MCT 1) expressing Xenopus laevis oocytes. Expression of two different monocarboxylate transporters in astroglial cells and neurons. Journal of Biological Chemistry 1997; 272(48)30096–30102
  • Broer S, Schneider HP, Broer A, Rahman B, Hamprecht B, Deitmer JW. Characterization of the monocarboxylate transporter 1 expressed in Xenopus laevis oocytes by changes in cytosolic pH. Biochemical Journal 1998; 333(Pt 1)167–174
  • Brooks GA. Current concepts in lactate exchange. Medicine and Science in Sports and Exercise 1991; 23(8)895–906
  • Burgomaster KA, Cermak NM, Phillips SM, Benton CR, Bonen A, Gibala MJ. Divergent response of metabolite transport proteins in human skeletal muscle after sprint interval training and detraining. American Journal of Physiology Regul Integr Comp Physiology 2007; 292(5)R1970–R1976
  • Buyse M, Sitaraman SV, Liu X, Bado A, Merlin D. Luminal leptin enhances CD147/MCT-1-mediated uptake of butyrate in the human intestinal cell line Caco2-BBE. Journal of Biological Chemistry 2002; 277(31)28182–28190
  • Coles L, Litt J, Hatta H, Bonen A. Exercise rapidly increases expression of the monocarboxylate transporters MCT1 and MCT4 in rat muscle. Journal of Physiology 2004; 561(Pt 1)253–261
  • Cranmer SL, Conant AR, Gutteridge WE, Halestrap AP. Characterization of the enhanced transport of L- and D-lactate into human red blood cells infected with Plasmodium falciparum suggests the presence of a novel saturable lactate proton cotransporter. Journal of Biological Chemistry 1995; 270(25)15045–15052
  • Cuff MA, Shirazi-Beechey SP. The importance of butyrate transport to the regulation of gene expression in the colonic epithelium. Biochemical Society Transactions 2004; 32(Pt 6)1100–1102
  • Dalsgaard MK, Ogoh S, Dawson EA, Yoshiga CC, Quistorff B, Secher NH. Cerebral carbohydrate cost of physical exertion in humans. American Journal of Physiology 2004; 287(3)R534–R540
  • Deguchi Y, Nozawa K, Yamada S, Yokoyama Y, Kimura R. Quantitative evaluation of brain distribution and blood–brain barrier efflux transport of probenecid in rats by microdialysis: Possible involvement of the monocarboxylic acid transport system. Journal of Pharmacology and Experimental Therapeutics 1997; 280(2)551–560
  • Deguchi Y, Yokoyama Y, Sakamoto T, Hayashi H, Naito T, Yamada S, Kimura R. Brain distribution of 6-mercaptopurine is regulated by the efflux transport system in the blood–brain barrier. Life Sciences 2000; 66(7)649–662
  • Deuticke B. Monocarboxylate transport in erythrocytes. Journal of Membrane Biology 1982; 70(2)89–103
  • Deuticke B, Rickert I, Beyer E. Stereoselective, SH-dependent transfer of lactate in mammalian erythrocytes. Biochimica et Biophysica Acta 1978; 507(1)137–155
  • Di Cosimo S, Ferretti G, Papaldo P, Carlini P, Fabi A, Cognetti F. Lonidamine: Efficacy and safety in clinical trials for the treatment of solid tumors. Drugs Today (Barcelona) 2003; 39(3)157–174
  • Dimmer KS, Friedrich B, Lang F, Deitmer JW, Broer S. The low-affinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells. Biochemical Journal 2000; 350(Pt 1)219–227
  • Downs JR, Clearfield M, Weis S, Whitney E, Shapiro DR, Beere PA, Langendorfer A, Stein EA, Kruyer W, Gotto AM, Jr, et al. Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels:. 1998; 1615–1622, Results of AFCAPS/TexCAPS
  • Dumitrescu AM, Liao XH, Weiss RE, Millen K, Refetoff S. Tissue-specific thyroid hormone deprivation and excess in monocarboxylate transporter (mct) 8-deficient mice. Endocrinology 2006; 147(9)4036–4043
  • Elliott JL, Saliba KJ, Kirk K. Transport of lactate and pyruvate in the intraerythrocytic malaria parasite, Plasmodium falciparum. Biochemical Journal 2001; 355(Pt 3)733–739
  • Enoki T, Yoshida Y, Lally J, Hatta H, Bonen A. Testosterone increases lactate transport, monocarboxylate transporter (MCT) 1 and MCT4 in rat skeletal muscle. Journal of Physiology 2006; 577(Pt 1)433–443
  • Evans M, Rees A. Effects of HMG-CoA reductase inhibitors on skeletal muscle: Are all statins the same?. Drug Safety 2002; 25(9)649–663
  • Fang J, Quinones QJ, Holman TL, Morowitz MJ, Wang Q, Zhao H, Sivo F, Maris JM, Wahl ML. The H+-linked monocarboxylate transporter (MCT1/SLC16A1): A potential therapeutic target for high-risk neuroblastoma. Molecular Pharmacology 2006; 70(6)2108–2115
  • Fliers E, Alkemade A, Wiersinga WM, Swaab DF. Hypothalamic thyroid hormone feedback in health and disease. Progress in Brain Research 2006a; 153: 189–207
  • Fliers E, Unmehopa UA, Alkemade A. Functional neuroanatomy of thyroid hormone feedback in the human hypothalamus and pituitary gland. Molecular and Cellular Endocrinology 2006b; 251(1–2)1–8
  • Floridi A, Paggi MG, Marcante ML, Silvestrini B, Caputo A, De Martino C. Lonidamine, a selective inhibitor of aerobic glycolysis of murine tumor cells. Journal of the National Cancer Institute 1981; 66(3)497–499
  • Friesema EC, Ganguly S, Abdalla A, Manning Fox JE, Halestrap AP, Visser TJ. Identification of monocarboxylate transporter 8 as a specific thyroid hormone transporter. Journal of Biological Chemistry 2003; 278(41)40128–40135
  • Friesema EC, Jansen J, Heuer H, Trajkovic M, Bauer K, Visser TJ. Mechanisms of disease: Psychomotor retardation and high T3 levels caused by mutations in monocarboxylate transporter 8. Nature Clinical Practice 2006a; 2(9)512–523
  • Friesema EC, Kuiper GG, Jansen J, Visser TJ, Kester MH. Thyroid hormone transport by the human monocarboxylate transporter 8 and its rate-limiting role in intracellular metabolism. Molecular Endocrinology (Baltimore) 2006b; 20(11)2761–2772
  • Galic S, Schneider HP, Broer A, Deitmer JW, Broer S. The loop between helix 4 and helix 5 in the monocarboxylate transporter MCT1 is important for substrate selection and protein stability. Biochemical Journal 2003; 376(Pt 2)413–422
  • Garcia CK, Brown MS, Pathak RK, Goldstein JL. cDNA cloning of MCT2, a second monocarboxylate transporter expressed in different cells than MCT1. Journal of Biological Chemistry 1995; 270(4)1843–1849
  • Garcia CK, Goldstein JL, Pathak RK, Anderson RG, Brown MS. Molecular characterization of a membrane transporter for lactate, pyruvate, and other monocarboxylates: Implications for the Cori cycle. Cell 1994a; 76(5)865–873
  • Garcia CK, Li X, Luna J, Francke U. cDNA cloning of the human monocarboxylate transporter 1 and chromosomal localization of the SLC16A1 locus to 1p13.2–p12. Genomics 1994b; 23(2)500–503
  • Gill RK, Saksena S, Alrefai WA, Sarwar Z, Goldstein JL, Carroll RE, Ramaswamy K, Dudeja PK. Expression and membrane localization of MCT isoforms along the length of the human intestine. American Journal of Physiology 2005; 289(4)C846–C852
  • Gjedde A, Crone C. Induction processes in blood–brain transfer of ketone bodies during starvation. American Journal of Physiology 1975; 229(5)1165–1169
  • Gladden LB. Lactate metabolism: A new paradigm for the third millennium. Journal of Physiology 2004; 558(Pt 1)5–30
  • Green HJ, Duhamel TA, Holloway GP, Moule JW, Ranney DW, Tupling AR, Ouyang J. Rapid upregulation of GLUT4 and MCT4 expression during sixteen hours of heavy intermittent cycle exercise. American Journal of Physiology 2007, doi:10.1152/ajpregu.00699.2007
  • Grollman EF, Philp NJ, McPhie P, Ward RD, Sauer B. Determination of transport kinetics of chick MCT3 monocarboxylate transporter from retinal pigment epithelium by expression in genetically modified yeast. Biochemistry 2000; 39(31)9351–9357
  • Gruters A. Thyroid hormone transporter defects. Endocrine Development 2007; 10: 118–a26
  • Gupta N, Martin PM, Prasad PD, Ganapathy V. SLC5A8 (SMCT1)-mediated transport of butyrate forms the basis for the tumor suppressive function of the transporter. Life Sciences 2006; 78(21)2419–2425
  • Halestrap AP. Transport of pyruvate and lactate into human erythrocytes. Evidence for the involvement of the chloride carrier and a chloride-independent carrier. Biochemical Journal 1976; 156(2)193–207
  • Halestrap AP, Denton RM. Specific inhibition of pyruvate transport in rat liver mitochondria and human erythrocytes by alpha-cyano-4-hydroxycinnamate. Biochemical Journal 1974; 138(2)313–316
  • Halestrap AP, Meredith D. The SLC16 gene family—from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Pflugers Archives 2004; 447(5)619–628
  • Halestrap AP, Price NT. The proton-linked monocarboxylate transporter (MCT) family: Structure, function and regulation. Biochemical Journal 1999; 343(Pt 2)281–299
  • Halestrap AP, Wang X, Poole RC, Jackson VN, Price NT. Lactate transport in heart in relation to myocardial ischemia. American Journal of Cardiology 1997; 80(3A)17A–25A
  • Havel RJ, Rapaport E. Management of primary hyperlipidemia. New England Journal of Medicine 1995; 332(22)1491–1498
  • Heidemann AC, Schipke CG, Kettenmann H. Extracellular application of nicotinic acid adenine dinucleotide phosphate induces Ca2+ signaling in astrocytes in situ. Journal of Biological Chemistry 2005; 280(42)35630–35640
  • Heuer H, Maier MK, Iden S, Mittag J, Friesema EC, Visser TJ, Bauer K. The monocarboxylate transporter 8 linked to human psychomotor retardation is highly expressed in thyroid hormone-sensitive neuron populations. Endocrinology 2005; 146(4)1701–1706
  • Hirai T, Fukui Y, Motojima K. PPARalpha agonists positively and negatively regulate the expression of several nutrient/drug transporters in mouse small intestine. Biological and Pharmaceutical Bulletin 2007; 30(11)2185–2190
  • Hu Y, Wilson GS. A temporary local energy pool coupled to neuronal activity: Fluctuations of extracellular lactate levels in rat brain monitored with rapid-response enzyme-based sensor. Journal of Neurochemistry 1997; 69(4)1484–1490
  • Inan MS, Rasoulpour RJ, Yin L, Hubbard AK, Rosenberg DW, Giardina C. The luminal short-chain fatty acid butyrate modulates NF-kappaB activity in a human colonic epithelial cell line. Gastroenterology 2000; 118(4)724–734
  • Iwanaga T, Takebe K, Kato I, Karaki S, Kuwahara A. Cellular expression of monocarboxylate transporters (MCT) in the digestive tract of the mouse, rat, and humans, with special reference to slc5a8. Biomedical Research (Tokyo) 2006; 27(5)243–254
  • Jackson VN, Price NT, Carpenter L, Halestrap AP. Cloning of the monocarboxylate transporter isoform MCT2 from rat testis provides evidence that expression in tissues is species-specific and may involve post-transcriptional regulation. Biochemical Journal 1997; 324(Pt 2)447–453
  • Jansen J, Friesema EC, Milici C, Visser TJ. Thyroid hormone transporters in health and disease. Thyroid 2005; 15(8)757–768
  • Jones DT. Improving the accuracy of transmembrane protein topology prediction using evolutionary information. Bioinformatics (Oxford) 2007; 23(5)538–544
  • Jones DT, Taylor WR, Thornton JM. A model recognition approach to the prediction of all-helical membrane protein structure and topology. Biochemistry 1994; 33(10)3038–3049
  • Jukema JW, Bruschke AV, Van Boven AJ, Reiber JH, Bal ET, Zwinderman AH, Jansen H, Boerma GJ, Van Rappard FM, Lie KI, et al. Effects of lipid lowering by pravastatin on progression and regression of coronary artery disease in symptomatic men with normal to moderately elevated serum cholesterol levels. The Regression Growth Evaluation Statin Study (REGRESS). Circulation 1995; 91(10)2528–2540
  • Kanaani J, Ginsburg H. Transport of lactate in Plasmodium falciparum-infected human erythrocytes. Journal of Cellular Physiology 1991; 149(3)469–476
  • Kido Y, Tamai I, Okamoto M, Suzuki F, Tsuji A. Functional clarification of MCT1-mediated transport of monocarboxylic acids at the blood–brain barrier using in vitro cultured cells and in vivo BUI studies. Pharmaceutical Research 2000; 17(1)55–62
  • Kim CM, Goldstein JL, Brown MS. cDNA cloning of MEV, a mutant protein that facilitates cellular uptake of mevalonate, and identification of the point mutation responsible for its gain of function. Journal of Biological Chemistry 1992; 267(32)23113–23121
  • Kim DK, Kanai Y, Chairoungdua A, Matsuo H, Cha SH, Endou H. Expression cloning of a Na+-independent aromatic amino acid transporter with structural similarity to H+/monocarboxylate transporters. Journal of Biological Chemistry 2001; 276(20)17221–17228
  • Kim DK, Kanai Y, Matsuo H, Kim JY, Chairoungdua A, Kobayashi Y, Enomoto A, Cha SH, Goya T, Endou H. The human T-type amino acid transporter-1: Characterization, gene organization, and chromosomal location. Genomics 2002; 79(1)95–103
  • Kirat D, Inoue H, Iwano H, Hirayama K, Yokota H, Taniyama H, Kato S. Expression and distribution of monocarboxylate transporter 1 (MCT1) in the gastrointestinal tract of calves. Research in Veterinary Science 2005; 79(1)45–50
  • Kirk P, Wilson MC, Heddle C, Brown MH, Barclay AN, Halestrap AP. CD147 is tightly associated with lactate transporters MCT1 and MCT4 and facilitates their cell surface expression. EMBO Journal 2000; 19(15)3896–3904
  • Kobayashi M, Otsuka Y, Itagaki S, Hirano T, Iseki K. Inhibitory effects of statins on human monocarboxylate transporter 4. International Journal of Pharmaceutics 2006; 317(1)19–25
  • Koehler-Stec EM, Simpson IA, Vannucci SJ, Landschulz KT, Landschulz WH. Monocarboxylate transporter expression in mouse brain. American Journal of Physiology 1998; 275(3 Pt 1)E516–E524
  • Lafreniere RG, Carrel L, Willard HF. A novel transmembrane transporter encoded by the XPCT gene in Xq13.2. Human Molecular Genetics 1994; 3(7)1133–1139
  • Leino RL, Gerhart DZ, Drewes LR. Monocarboxylate transporter (MCT1) abundance in brains of suckling and adult rats: A quantitative electron microscopic immunogold study. Brain Research Development Brain Research 1999; 113(1–2)47–54
  • Li H, Myeroff L, Smiraglia D, Romero MF, Pretlow TP, Kasturi L, Lutterbaugh J, Rerko RM, Casey G, Issa JP, et al. SLC5A8, a sodium transporter, is a tumor suppressor gene silenced by methylation in human colon aberrant crypt foci and cancers. Proceedings of the National Academy of Sciences, USA, 2003. 100: 8412–8417, (14)
  • Liebowitz MR, Fyer AJ, Gorman JM, Dillon D, Appleby IL, Levy G, Anderson S, Levitt M, Palij M, Davies SO, et al. Lactate provocation of panic attacks. I. Clinical and behavioral findings. Archives of General Psychiatry 1984; 41(8)764–770
  • Lin RY, Vera JC, Chaganti RS, Golde DW. Human monocarboxylate transporter 2 (MCT2) is a high affinity pyruvate transporter. Journal of Biological Chemistry 1998; 273(44)28959–28965
  • Manning Fox JE, Meredith D, Halestrap AP. Characterisation of human monocarboxylate transporter 4 substantiates its role in lactic acid efflux from skeletal muscle. Journal of Physiology 2000; 529(Pt 2)285–293
  • Manoharan C, Wilson MC, Sessions RB, Halestrap AP. The role of charged residues in the transmembrane helices of monocarboxylate transporter 1 and its ancillary protein basigin in determining plasma membrane expression and catalytic activity. Molecular Membrane Biology 2006; 23(6)486–498
  • McCullagh KJ, Poole RC, Halestrap AP, O’Brien M, Bonen A. Role of the lactate transporter (MCT1) in skeletal muscles. American Journal of Physiology 1996; 271(1 Pt 1)E143–E150
  • Meredith D, Bell P, McClure B, Wilkins R. Functional and molecular characterisation of lactic acid transport in bovine articular chondrocytes. Cell Physiology and Biochemistry 2002; 12(4)227–234
  • Meredith D, Price RA. Molecular modeling of PepT1 — towards a structure. Journal of Membrane Biology 2006; 213(2)79–88
  • Meredith D, Roberts M, Halestrap AP. Both K290 and K413 are essential for DIDS covalent modification of the rat proton-linked monocarboxylate (lactate) transporter MCT1 expressed in Xenopus laevis oocytes. Journal of Physiology 1999; 517P: 25P
  • Merezhinskaya N, Fishbein WN, Davis JI, Foellmer JW. Mutations in MCT1 cDNA in patients with symptomatic deficiency in lactate transport. Muscle and Nerve 2000; 23(1)90–97
  • Messonnier L, Denis C, Feasson L, Lacour JR. An elevated sarcolemmal lactate (and proton) transport capacity is an advantage during muscle activity in healthy humans. Journal of Applied Physiology 2006, doi:10.1152/japplphysiol.00807.2008
  • Messonnier L, Kristensen M, Juel C, Denis C. Importance of pH regulation and lactate/H+ transport capacity for work production during supramaximal exercise in humans. Journal of Applied Physiology 2007; 102(5)1936–1944
  • Mohr M, Krustrup P, Nielsen JJ, Nybo L, Rasmussen MK, Juel C, Bangsbo J. Effect of two different intense training regimens on skeletal muscle ion transport proteins and fatigue development. American Journal of Physiology 2007; 292(4)R1594–R1602
  • Morgenstern B. DIALIGN: Multiple DNA and protein sequence alignment at BiBiServ. Nucleic Acids Research 2004; 32(Web Server issue)W33–W36
  • Morreale de Escobar G, Obregon MJ, Escobar del Rey F. Is neuropsychological development related to maternal hypothyroidism or to maternal hypothyroxinemia?. Journal of Clinical Endocrinology and Metabolism 2000; 85(11)3975–3987
  • Mortensen PB, Clausen MR. Short-chain fatty acids in the human colon: Relation to gastrointestinal health and disease. Scandinavian Journal of Gastroenterology 1996; 216: 132–148
  • Munro E, Patel M, Chan P, Betteridge L, Clunn G, Gallagher K, Hughes A, Schachter M, Wolfe J, Sever P. Inhibition of human vascular smooth muscle cell proliferation by lovastatin: The role of isoprenoid intermediates of cholesterol synthesis. European Journal of Clinical Investigation 1994; 24(11)766–772
  • Murakami Y, Kohyama N, Kobayashi Y, Ohbayashi M, Ohtani H, Sawada Y, Yamamoto T. Functional characterization of human monocarboxylate transporter 6 (SLC16A5). Drug Metabolism and Disposition: The Biological Fate of Chemicals 2005; 33(12)1845–1851
  • Nagasawa K, Nagai K, Ishimoto A, Fujimoto S. Transport mechanism for lovastatin acid in bovine kidney NBL-1 cells: Kinetic evidences imply involvement of monocarboxylate transporter 4. International Journal of Pharmaceutics 2003; 262(1–2)63–73
  • Nagasawa K, Nagai K, Sumitani Y, Moriya Y, Muraki Y, Takara K, Ohnishi N, Yokoyama T, Fujimoto S. Monocarboxylate transporter mediates uptake of lovastatin acid in rat cultured mesangial cells. Journal of Pharmaceutical Sciences 2002; 91(12)2605–2613
  • Nehlig A, Boyet S, Pereira de Vasconcelos A. Autoradiographic measurement of local cerebral beta-hydroxybutyrate uptake in the rat during postnatal development. Neuroscience 1991; 40(3)871–878
  • Ochrietor JD, Linser PJ. 5A11/Basigin gene products are necessary for proper maturation and function of the retina. Developmental Neuroscience 2004; 26(5–6)380–387
  • Ord JJ, Streeter EH, Roberts IS, Cranston D, Harris AL. Comparison of hypoxia transcriptome in vitro with in vivo gene expression in human bladder cancer. British Journal of Cancer 2005; 93(3)346–354
  • Peterson GM, Naunton M. Valproate: A simple chemical with so much to offer. Journal of Clinical Pharmacy and Therapeutics 2005; 30(5)417–421
  • Philp NJ, Ochrietor JD, Rudoy C, Muramatsu T, Linser PJ. Loss of MCT1, MCT3, and MCT4 expression in the retinal pigment epithelium and neural retina of the 5A11/basigin-null mouse. Investigative Ophthalmology and Visual Science 2003a; 44(3)1305–1311
  • Philp NJ, Wang D, Yoon H, Hjelmeland LM. Polarized expression of monocarboxylate transporters in human retinal pigment epithelium and ARPE-19 cells. Investigative Ophthalmology and Visual Science 2003b; 44(4)1716–1721
  • Philp NJ, Yoon H, Grollman EF. Monocarboxylate transporter MCT1 is located in the apical membrane and MCT3 in the basal membrane of rat RPE. American Journal of Physiology 1998; 274(6 Pt 2)R1824–R1828
  • Philp NJ, Yoon H, Lombardi L. Mouse MCT3 gene is expressed preferentially in retinal pigment and choroid plexus epithelia. American Journal of Physiology 2001; 280(5)C1319–C1326
  • Pierre K, Parent A, Jayet PY, Halestrap AP, Scherrer U, Pellerin L. Enhanced expression of three monocarboxylate transporter isoforms in the brain of obese mice. Journal of Physiology 2007; 583(Pt 2)469–486
  • Pilegaard H, Terzis G, Halestrap A, Juel C. Distribution of the lactate/H+ transporter isoforms MCT1 and MCT4 in human skeletal muscle. American Journal of Physiology 1999; 276(5 Pt 1)E843–E848
  • Pollay M, Stevens FA. Starvation-induced changes in transport of ketone bodies across the blood–brain barrier. Journal of Neuroscience Research 1980; 5(2)163–172
  • Poole RC, Cranmer SL, Halestrap AP, Levi AJ. Substrate and inhibitor specificity of monocarboxylate transport into heart cells and erythrocytes. Further evidence for the existence of two distinct carriers. Biochemical Journal 1990; 269(3)827–829
  • Poole RC, Halestrap AP. Reversible and irreversible inhibition, by stilbenedisulphonates, of lactate transport into rat erythrocytes. Identification of some new high-affinity inhibitors. Biochemical Journal 1991; 275(Pt 2)307–312
  • Poole RC, Halestrap AP. Identification and partial purification of the erythrocyte L-lactate transporter. Biochemical Journal 1992; 283(Pt 3)855–862
  • Poole RC, Halestrap AP. Transport of lactate and other monocarboxylates across mammalian plasma membranes. American Journal of Physiology 1993; 264(4 Pt 1)C761–C782
  • Poole RC, Sansom CE, Halestrap AP. Studies of the membrane topology of the rat erythrocyte H+/lactate cotransporter (MCT1). Biochemical Journal 1996; 320(Pt 3)817–824
  • Price NT, Jackson VN, Halestrap AP. Cloning and sequencing of four new mammalian monocarboxylate transporter (MCT) homologues confirms the existence of a transporter family with an ancient past. Biochemical Journal 1998; 329(Pt 2)321–328
  • Prummel MF, Brokken LJ, Wiersinga WM. Ultra short-loop feedback control of thyrotropin secretion. Thyroid 2004; 14(10)825–829
  • Py G, Eydoux N, Lambert K, Chapot R, Koulmann N, Sanchez H, Bahi L, Peinnequin A, Mercier J, Bigard AX. Role of hypoxia-induced anorexia and right ventricular hypertrophy on lactate transport and MCT expression in rat muscle. Metabolism: Clinical and Experimental 2005; 54(5)634–644
  • Rafiki A, Boulland JL, Halestrap AP, Ottersen OP, Bergersen L. Highly differential expression of the monocarboxylate transporters MCT2 and MCT4 in the developing rat brain. Neuroscience 2003; 122(3)677–688
  • Rahman B, Schneider HP, Broer A, Deitmer JW, Broer S. Helix 8 and helix 10 are involved in substrate recognition in the rat monocarboxylate transporter MCT1. Biochemistry 1999; 38(35)11577–11584
  • Ramadan T, Camargo SM, Herzog B, Bordin M, Pos KM, Verrey F. Recycling of aromatic amino acids via TAT1 allows efflux of neutral amino acids via LAT2-4F2hc exchanger. Pflugers Archives 2007; 454(3)507–516
  • Ramadan T, Camargo SM, Summa V, Hunziker P, Chesnov S, Pos KM, Verrey F. Basolateral aromatic amino acid transporter TAT1 (Slc16a10) functions as an efflux pathway. Journal of Cellular Physiology 2006; 206(3)771–779
  • Rechsteiner M, Rogers SW. PEST sequences and regulation by proteolysis. Trends in Biochemical Sciences 1996; 21(7)267–271
  • Roediger WE. Utilization of nutrients by isolated epithelial cells of the rat colon. Gastroenterology 1982; 83(2)424–429
  • Roehrborn CG. The development of lonidamine for benign prostatic hyperplasia and other indications. Reviews in Urology 2005; 7(Suppl. 7)S12–S20
  • Rogers S, Wells R, Rechsteiner M. Amino acid sequences common to rapidly degraded proteins: The PEST hypothesis. Science (New York) 1986; 234(4774)364–368
  • Russell JL, Kushner MG, Beitman BD, Bartels KM. Nonfearful panic disorder in neurology patients validated by lactate challenge. American Journal of Psychiatry 1991; 148(3)361–364
  • Saheki A, Terasaki T, Tamai I, Tsuji A. In vivo and in vitro blood–brain barrier transport of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors. Pharmaceutical Research 1994; 11(2)305–311
  • Scanlan TS, Suchland KL, Hart ME, Chiellini G, Huang Y, Kruzich PJ, Frascarelli S, Crossley DA, Bunzow JR, Ronca-Testoni S, et al. 3-Iodothyronamine is an endogenous and rapid-acting derivative of thyroid hormone. Nature Medicine 2004; 10(6)638–642
  • Schaefer EJ. HMG-CoA reductase inhibitors for hypercholesterolemia. New England Journal of Medicine 1988; 319: 1222–1223
  • Semenza GL. Hypoxia-inducible factor 1: Oxygen homeostasis and disease pathophysiology. Trends in Molecular Medicine 2001; 7(8)345–350
  • Settle P, Mynett K, Speake P, Champion E, Doughty IM, Sibley CP, D'Souza SW, Glazier J. Polarized lactate transporter activity and expression in the syncytiotrophoblast of the term human placenta. Placenta 2004; 25(6)496–504
  • Sherman IW. Parasite biology, pathogenesis, and protection., IW Sherman. ASM Press, MalariaUSA 1998; 135–143
  • Shimada A, Nakagawa Y, Morishige H, Yamamoto A, Fujita T. Functional characteristics of H+-dependent nicotinate transport in primary cultures of astrocytes from rat cerebral cortex. Neuroscience Letters 2006; 392(3)207–212
  • Simanjuntak MT, Tamai I, Terasaki T, Tsuji A. Carrier-mediated uptake of nicotinic acid by rat intestinal brush-border membrane vesicles and relation to monocarboxylic acid transport. Journal of Pharmacobio-Dynamics 1990; 13(5)301–309
  • Sirvent P, Bordenave S, Vermaelen M, Roels B, Vassort G, Mercier J, Raynaud E, Lacampagne A. Simvastatin induces impairment in skeletal muscle while heart is protected. Biochemical and Biophysical Research Communications 2005; 338(3)1426–1434
  • Skoyum R, Eide K, Berg K, Rofstad EK. Energy metabolism in human melanoma cells under hypoxic and acidic conditions in vitro. British Journal of Cancer 1997; 76(4)421–428
  • Takanaga H, Maeda H, Yabuuchi H, Tamai I, Higashida H, Tsuji A. Nicotinic acid transport mediated by pH-dependent anion antiporter and proton cotransporter in rabbit intestinal brush-border membrane. Journal of Pharmacy and Pharmacology 1996; 48(10)1073–1077
  • Tamai I, Sai Y, Ono A, Kido Y, Yabuuchi H, Takanaga H, Satoh E, Ogihara T, Amano O, Izeki S, et al. Immunohistochemical and functional characterization of pH-dependent intestinal absorption of weak organic acids by the monocarboxylic acid transporter MCT1. Journal of Pharmacy and Pharmacology 1999; 51(10)1113–1121
  • Tan SW, Zoeller RT. Integrating basic research on thyroid hormone action into screening and testing programs for thyroid disruptors. Critical Reviews in Toxicology 2007; 37(1–2)5–10
  • Thibault R, De Coppet P, Daly K, Bourreille A, Cuff M, Bonnet C, Mosnier JF, Galmiche JP, Shirazi-Beechey S, Segain JP. Down-regulation of the monocarboxylate transporter 1 is involved in butyrate deficiency during intestinal inflammation. Gastroenterology 2007; 133(6)1916–1927
  • Thomas C, Perrey S, Lambert K, Hugon G, Mornet D, Mercier J. Monocarboxylate transporters, blood lactate removal after supramaximal exercise, and fatigue indexes in humans. Journal of Applied Physiology 2005; 98(3)804–809
  • Topping DL, Clifton PM. Short-chain fatty acids and human colonic function: Roles of resistant starch and nonstarch polysaccharides. Physiological Reviews 2001; 81(3)1031–1064
  • Trajkovic M, Visser TJ, Mittag J, Horn S, Lukas J, Darras VM, Raivich G, Bauer K, Heuer H. Abnormal thyroid hormone metabolism in mice lacking the monocarboxylate transporter 8. Journal of Clinical Investigation 2007; 117(3)627–635
  • Ullah MS, Davies AJ, Halestrap AP. The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1alpha-dependent mechanism. Journal of Biological Chemistry 2006; 281(14)9030–9037
  • Visser WE, Friesema EC, Jansen J, Visser TJ. Thyroid hormone transport by monocarboxylate transporters. Best Practice and Research 2007; 21(2)223–236
  • Wahl ML, Owen JA, Burd R, Herlands RA, Nogami SS, Rodeck U, Berd D, Leeper DB, Owen CS. Regulation of intracellular pH in human melanoma: Potential therapeutic implications. Molecular Cancer Therapeutics 2002; 1(8)617–628
  • Walenta S, Salameh A, Lyng H, Evensen JF, Mitze M, Rofstad EK, Mueller-Klieser W. Correlation of high lactate levels in head and neck tumors with incidence of metastasis. American Journal of Pathology 1997; 150(2)409–415
  • Wang Q, Darling IM, Morris ME. Transport of gamma-hydroxybutyrate in rat kidney membrane vesicles: Role of monocarboxylate transporters. Journal of Pharmacology and Experimental Therapeutics 2006; 318(2)751–761
  • Wang Q, Morris ME. The role of monocarboxylate transporter 2 and 4 in the transport of gamma-hydroxybutyric acid in mammalian cells. Drug Metabolism and Disposition: The Biological Fate of Chemicals 2007; 35(8)1393–1399
  • Wang X, Poole RC, Halestrap AP, Levi AJ. Characterization of the inhibition by stilbene disulphonates and phloretin of lactate and pyruvate transport into rat and guinea-pig cardiac myocytes suggests the presence of two kinetically distinct carriers in heart cells. Biochemical Journal 1993; 290(Pt 1)249–258
  • Wilson MC, Jackson VN, Heddle C, Price NT, Pilegaard H, Juel C, Bonen A, Montgomery I, Hutter OF, Halestrap AP. Lactic acid efflux from white skeletal muscle is catalyzed by the monocarboxylate transporter isoform MCT3. Journal of Biological Chemistry 1998; 273(26)15920–15926
  • Wilson MC, Meredith D, Fox JE, Manoharan C, Davies AJ, Halestrap AP. Basigin (CD147) is the target for organomercurial inhibition of monocarboxylate transporter isoforms 1 and 4: The ancillary protein for the insensitive MCT2 is EMBIGIN (gp70). Journal of Biological Chemistry 2005; 280(29)27213–27221
  • Wilson MC, Meredith D, Halestrap AP. Fluorescence resonance energy transfer studies on the interaction between the lactate transporter MCT1 and CD147 provide information on the topology and stoichiometry of the complex in situ. Journal of Biological Chemistry 2002; 277(5)3666–3672
  • Yokel RA, Wilson M, Harris WR, Halestrap AP. Aluminum citrate uptake by immortalized brain endothelial cells: Implications for its blood–brain barrier transport. Brain Research 2002; 930(1–2)101–110
  • Yoon H, Fanelli A, Grollman EF, Philp NJ. Identification of a unique monocarboxylate transporter (MCT3) in retinal pigment epithelium. Biochemical and Biophysical Research Communications 1997; 234(1)90–94

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.